Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(9): e19890, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37809974

RESUMEN

Goat milk gels (GMGs) are popular food due to their high water content, low-calorie density, appealing taste, texture enhancers, stability, and satiety-enhancing characteristics, making them ideal for achieving food security and zero hunger. The GMGs were optimized using the central composite design matrix of response surface methodology using goat milk powder (35-55 g), whole milk powder (10-25 g), and potato powder (10-15 g) as independent variables. In contrast, complex modulus, flow stress, and forward extrudability were chosen as dependent variables. The maximum value of complex modulus 33670.9 N, good flow stress 7863.6 N, and good extrudability 65.32 N was achieved under optimal conditions. The optimized goat milk gel was fortified with ascorbic acid-coated iron oxide nanoparticle (magnetic nature) decorated alginate-chitosan nanoparticles (AA-MNP@CANPs), making it nutritionally rich in an economically feasible way-the decorated AA-MNP@CANPs characterized for size, shape, crystallinity, surface charge, and optical characteristics. Finally, the optimized fortified smart GMGs were further characterized via Scanning electron microscopy, Rheology, Texture profile analysis, Fourier transforms infrared (FTIR), and X-Ray Diffraction (XRD). The fortified smart GMGs carry more nutritional diversity, targeted iron delivery, and the fundamental sustainability development goal of food security.

2.
Nanotechnology ; 34(50)2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37708885

RESUMEN

The paper critically addresses two contemporary environmental challenges, the water crisis and the unrestricted discharge of organic pollutants in waterways together. An eco-friendly method was used to fabricate a cellulose/g-C3N4/TiO2photocatalytic composite that displayed a remarkable degradation of methylene blue dye and atenolol drug under natural sunlight. Introducing graphitic carbon nitride (g-C3N4) onto pristine TiO2improved hybrid material's photonic efficacy and enhanced interfacial charge separation. Furthermore, immobilizing TiO2/g-C3N4on a semi-interpenetrating cellulose matrix promoted photocatalyst recovery and its reuse, ensuring practical affordability. Under optimized conditions, the nano-photocatalyst exhibited ∼95% degradation of both contaminants within two hours while retaining ∼55% activity after ten cycles demonstrating a promising photostability. The nano-photocatalyst caused 66% and 57% reduction in COD and TOC values in industrial wastewater containing these pollutants. The photocatalysis was fitted to various models to elucidate the degradation kinetics, while LC-MS results suggested the mineralization pathway of dye majorly via ring opening demethylation. >98% disinfection was achieved againstE. coli(104-105CFU·ml-1) contaminated water. This study thus paves multifaceted strategies to treat wastewater contaminants at environmental levels employing nano-photocatalysis.

3.
Colloids Surf B Biointerfaces ; 227: 113362, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37257298

RESUMEN

The study proposes an alternative therapeutics to diminish bacterial attachment in biomedical implants by modifying their surface with passive coatings. A uniform, thin-film of chitosan/polyvinyl alcohol/graphene oxide (CS/PVA/GO) was coated on 316 L stainless steel (SS) surface through spread casting followed by solvent evaporation. The abundant anchoring sites available at macromolecular interfaces of chitosan/PVA matrix facilitated a smooth, dense loading of GO. The effect of GO content on physicochemical features, antibacterial potential, and biocompatibility of coatings was thoroughly studied. The hybrid films displayed good adhesion behavior, and UV-protection ability with desired mechanical and thermal stability when coated on SS surface. Coatings manifested a 1.5-1.7 fold rise in antibacterial efficacy against Staphylococcus epidermidis and Staphylococcus aureus and exhibited a permanent biocidal response after 6 h of contact-active behaviour. We investigated a 3-fold generation of reactive oxygen species as the predominant antibacterial mechanism, which diminishes bacterial integrity by inducing protein leakage (8.5-9 fold higher) and suppressing respiratory chain activity as two secondary mechanisms. All coatings with varying GO content appeared non-haemolytic (<2%) with ultra-low cytotoxicity (<29.08%) against human hepatocellular carcinoma (HepG2) and peripheral blood mononuclear cells. The degradation rate of coatings in simulated body fluid exhibited a higher stability, indicated by a lower weight loss (69-78%) and a decrease in pH values as the GO content in coatings increased from 0.05 to 0.15 wt%. Such anti-infective coating is a step forward in inhibiting bacterial colonization on SS surfaces to extend its lifespan.


Asunto(s)
Quitosano , Alcohol Polivinílico , Humanos , Alcohol Polivinílico/farmacología , Alcohol Polivinílico/química , Quitosano/farmacología , Quitosano/química , Acero Inoxidable/farmacología , Leucocitos Mononucleares , Antibacterianos/farmacología , Antibacterianos/química , Materiales Biocompatibles Revestidos/farmacología , Materiales Biocompatibles Revestidos/química
4.
Nanotechnology ; 33(2)2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34614488

RESUMEN

Insecticide cartap hydrochloride (C) was fabricated as nanospheres by a two-step method of ionic gelification and polyelectrolyte complexation of alginate (ALG) and chitosan (CS) to undermine its adverse effects on environment. Nanospheres were characterized by field emission scanning electron microscope, Fourier transform infrared spectra and x-ray diffraction. The size of cartap hydrochloride entrapped chitosan alginate nanospheres (C-CS-ALG nps) was in range of 107.58-173.07 nm. Cartap hydrochloride nanospheres showed encapsulation efficiency of 76.19% and were stable for 30 d at ambient temperature. Release of cartap from nanospheres fitted best with first order linear kinetics followed by Hixson and Higuchi model suggesting super case II transport release. With the application of such control release nanoformulations, it is possible to reduce the frequency of field application of insecticide due to its slow release to the target organism, which is economical as well as environmentally safe.

5.
Carbohydr Polym ; 262: 117906, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33838794

RESUMEN

Silver nanoparticle (AgNP) incorporated chitosan-Polyvinyl alcohol (Ch/PVA) hydrogel nanocomposite was fabricated by repeated freeze-thaw treatment using glutaraldehyde as crosslinker for removal of herbicide butachlor from aqueous solution. Ch/PVA hydrogel provided a matrix for in-situ immobilization of AgNPs and were characterized by various physicochemical techniques. AgNPs of size 5-20 nm possessed crystalline structure, led to increase in thermal stability and surface area after incorporation into Ch/PVA hydrogel. Ch/PVA hydrogel nanocomposite showed maximum adsorption of butachlor (86.55 %) at 30 °C and pH 3.0, while Ch/PVA-Ag showed a slight increase in adsorption of butachlor following pseudo-second order kinetics. Langmuir and Freundlich models with different error functions (R2, R2adj, RSME, χ2 and RSS), confirmed monolayer adsorption of butachlor.


Asunto(s)
Acetanilidas/aislamiento & purificación , Quitosano/química , Nanopartículas del Metal/química , Nanocompuestos/química , Alcohol Polivinílico/química , Plata/química , Adsorción , Reactivos de Enlaces Cruzados/química , Glutaral/química , Herbicidas/aislamiento & purificación , Humanos , Cinética , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Temperatura
6.
Curr Drug Metab ; 20(6): 483-505, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30479212

RESUMEN

BACKGROUND: The limitless presence of pharmaceutical contaminants in discharged wastewater has emerged as a threat to aquatic species and humans. Their presence in drinking water has although raised substantial concerns, very little is known about the fate and ecological impacts of these pollutants. As a result, these pollutants are inevitably introduced to our food chain at trace concentrations. Unfortunately, the conventional wastewater treatment techniques are unable to treat pharmaceuticals completely with practical limitations. The focus has now been shifted towards nanotechnology for the successful remediation of these persistent pollutants. Thus, the current review specifically focuses on providing readers brief yet sharp insights into applications of various nanomaterials for the removal of pharmaceutical contaminants. METHODS: An exhaustive collection of bibliographic database was done with articles having high impact and citations in relevant research domains. An in-depth analysis of screened papers was done through standard tools. Studies were categorized according to the use of nanoscale materials as nano-adsorbents (graphene, carbon nanotubes), nanophotocatalysts (metal, metal oxide), nano-filtration, and ozonation for promising alternative technologies for the efficient removal of recalcitrant contaminants. RESULTS: A total of 365 research articles were selected. The contemporary advancements in the field of nanomaterials for drinking and wastewater treatment have been thoroughly analyzed along with their future perspectives. CONCLUSION: The recommendations provided in this article will be useful to adopt novel strategies for on-site removal of the emerging contaminants in pharmaceutical effluents and related industries.


Asunto(s)
Nanoestructuras , Nanotecnología/métodos , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos , Contaminantes Ambientales , Grafito , Nanotubos de Carbono , Aguas Residuales
7.
Nanoscale ; 7(16): 7415-29, 2015 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-25830178

RESUMEN

Silver-based hybrid nanomaterials are gaining interest as potential alternatives for conventional antimicrobial agents. Herein, we present a simple, facile and eco-friendly approach for the deposition of silver nanoparticles (AgNPs) on ZnO nanorods, which act as a nanoreactor for in situ synthesis and as an immobilizing template in the presence of arginine. The presence of arginine enhanced the stability of ZnO deposition on the glass substrate by hindering the dissolution of zinc under alkaline conditions. Various Ag/ZnO hybrid nanorod (HNR) samples were screened to obtain a high amount of silver immobilization on the ZnO substrate. Ag/ZnO HNRs displayed potent antibacterial ability and could achieve 100% kill for both Escherichia coli and Bacillus subtilis strains under various test conditions. The hybrid material mediated its dual mode of antibacterial action through direct contact-killing and release of silver ions/nanoparticles and showed superior bactericidal performance compared to pure ZnO nanorods and colloidal AgNPs. No significant decline in antibacterial efficacy was observed even after the same substrate was repeatedly reused multiple times. Interestingly, the amount of Ag and Zn release was much below their maximal limit in drinking water, thus preventing potential health hazards. Immobilized AgNPs showed no cytotoxic effects on the human hepatocarcinoma cell line (HepG2). Moreover, treating cells with the antibacterial substrate for 24 hours did not lead to significant generation of reactive oxygen species (ROS). The good biocompatibility and bactericidal efficacy would thus make it feasible to utilize this immobilization strategy for preparing new-generation antibacterial coatings.


Asunto(s)
Antibacterianos/química , Arginina/química , Nanopartículas del Metal/química , Nanotubos/química , Antibacterianos/farmacología , Antibacterianos/toxicidad , Bacillus subtilis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Células Hep G2 , Humanos , Microscopía Electrónica de Transmisión , Nanotubos/ultraestructura , Especies Reactivas de Oxígeno/metabolismo , Plata/química , Óxido de Zinc/química
8.
Nanoscale ; 5(16): 7328-40, 2013 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-23821237

RESUMEN

Antimicrobial materials with immobilized/entrapped silver nanoparticles (AgNPs) are of considerable interest. There is significant debate on the mode of bactericidal action of AgNPs, and both contact killing and/or ion mediated killing have been proposed. In this study, AgNPs were immobilized on an amine-functionalized silica surface and their bactericidal activity was studied concurrently with the silver release profile over time. This was compared with similar studies performed using colloidal AgNPs and AgCl surfaces that released Ag ions. We conclude that contact killing is the predominant bactericidal mechanism and surface immobilized nanoparticles show greater efficacy than colloidal AgNPs, as well as a higher concentration of silver ions in solution. In addition, the AgNP immobilized substrate was used multiple times with good efficacy, indicating this immobilization protocol is effective for retaining AgNPs while maintaining their disinfection potential. The antibacterial surface was found to be extremely stable in aqueous medium and no significant leaching (∼1.15% of total silver deposited) of the AgNPs was observed. Thus, immobilization of AgNPs on a surface may promote reuse, reduce environmental risks associated with leaching of AgNPs and enhance cost effectiveness.


Asunto(s)
Antibacterianos/química , Nanopartículas del Metal/química , Plata/química , Antibacterianos/farmacología , Bacillus subtilis/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Microscopía Electrónica de Transmisión , Dióxido de Silicio/química , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...