Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(1): 113616, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38150367

RESUMEN

Macrophages populate the embryo early in gestation, but their role in development is not well defined. In particular, specification and function of macrophages in intestinal development remain little explored. To study this event in the human developmental context, we derived and combined human intestinal organoid and macrophages from pluripotent stem cells. Macrophages migrate into the organoid, proliferate, and occupy the emerging microanatomical niches of epithelial crypts and ganglia. They also acquire a transcriptomic profile similar to that of fetal intestinal macrophages and display tissue macrophage behaviors, such as recruitment to tissue injury. Using this model, we show that macrophages reduce glycolysis in mesenchymal cells and limit tissue growth without affecting tissue architecture, in contrast to the pro-growth effect of enteric neurons. In short, we engineered an intestinal tissue model populated with macrophages, and we suggest that resident macrophages contribute to the regulation of metabolism and growth of the developing intestine.


Asunto(s)
Macrófagos , Células Madre Pluripotentes , Humanos , Diferenciación Celular , Macrófagos/metabolismo , Intestinos , Células Madre Pluripotentes/metabolismo , Intestino Delgado , Organoides/metabolismo
2.
JCI Insight ; 7(6)2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35167498

RESUMEN

Dyslipidemia and autophagy have been implicated in the pathogenesis of blinding neovascular age-related macular degeneration (NV-AMD). VLDL receptor (VLDLR), expressed in photoreceptors with a high metabolic rate, facilitates the uptake of triglyceride-derived fatty acids. Since fatty acid uptake is reduced in Vldlr-/- tissues, more remain in circulation, and the retina is fuel deficient, driving the formation in mice of neovascular lesions reminiscent of retinal angiomatous proliferation (RAP), a subtype of NV-AMD. Nutrient scarcity and energy failure are classically mitigated by increasing autophagy. We found that excess circulating lipids restrained retinal autophagy, which contributed to pathological angiogenesis in the Vldlr-/- RAP model. Triglyceride-derived fatty acid sensed by free fatty acid receptor 1 (FFAR1) restricted autophagy and oxidative metabolism in photoreceptors. FFAR1 suppressed transcription factor EB (TFEB), a master regulator of autophagy and lipid metabolism. Reduced TFEB, in turn, decreased sirtuin-3 expression and mitochondrial respiration. Metabolomic signatures of mouse RAP-like retinas were consistent with a role in promoting angiogenesis. This signature was also found in human NV-AMD vitreous. Restoring photoreceptor autophagy in Vldlr-/- retinas, either pharmacologically or by deleting Ffar1, enhanced metabolic efficiency and suppressed pathological angiogenesis. Dysregulated autophagy by circulating lipids might therefore contribute to the energy failure of photoreceptors driving neovascular eye diseases, and FFAR1 may be a target for intervention.


Asunto(s)
Degeneración Macular , Neovascularización Retiniana , Animales , Autofagia , Proliferación Celular , Ácidos Grasos , Degeneración Macular/patología , Ratones , Neovascularización Patológica , Receptores Acoplados a Proteínas G , Neovascularización Retiniana/patología , Triglicéridos
3.
Cancer Immunol Immunother ; 68(12): 1995-2004, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31690954

RESUMEN

Glioblastoma is a highly prevalent and aggressive form of primary brain tumor. It represents approximately 56% of all the newly diagnosed gliomas. Macrophages are one of the major constituents of tumor-infiltrating immune cells in the human gliomas. The role of immunosuppressive macrophages is very well documented in correlation with the poor prognosis of patients suffering from breast, prostate, bladder and cervical cancers. The current study highlights the correlation between the tumor-associated macrophage phenotypes and glioma progression. We observed an increase in the pool of M2 macrophages in high-grade gliomas, as confirmed by their CD68 and CD163 double-positive phenotype. In contrast, less M1 macrophages were noticed in high-grade gliomas, as evidenced by the down-regulation in the expression of CCL3 marker. In addition, we observed that higher gene expression ratio of CD163/CCL3 is associated with glioma progression. The Kaplan-Meier survival plots indicate that glioma patients with lower expression of M2c marker (CD163), and higher expression of M1 marker (CCL3) had better survival. Furthermore, we examined the systemic immune response in the peripheral blood and noted a predominance of M2 macrophages, myeloid-derived suppressor cells and PD-1+ CD4 T cells in glioma patients. Thus, the study indicates a high gene expression ratio of CD163/CCL3 in high-grade gliomas as compared to low-grade gliomas and significantly elevated frequency of M2 macrophages and PD-1+ CD4 T cells in the blood of tumor patients. These parameters could be used as an indicator of the early diagnosis and prognosis of the disease.


Asunto(s)
Neoplasias Encefálicas/inmunología , Linfocitos T CD4-Positivos/patología , Glioblastoma/inmunología , Macrófagos/inmunología , Células Supresoras de Origen Mieloide/inmunología , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Neoplasias Encefálicas/mortalidad , Carcinogénesis , Quimiocina CCL3/metabolismo , Citocinas/metabolismo , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Glioblastoma/mortalidad , Humanos , Tolerancia Inmunológica , Inmunidad Humoral , Receptor de Muerte Celular Programada 1/metabolismo , Receptores de Superficie Celular/metabolismo , Análisis de Supervivencia , Células Th2/inmunología
4.
Front Immunol ; 9: 1650, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30072995

RESUMEN

During tumor progression, macrophages shift their protective M1-phenotype to pro-tumorigenic M2-subtype. Therefore, conversion of M2 to M1 phenotype may be a potential therapeutic intervention. TLRs are important pathogen recognition receptors expressed by cells of the immune system. Recently, a crucial role of TLR-3 has been suggested in cancer. Consequently, in the current study, we defined the role of TLR-3 in the reversion of M2-macrophages to M1. We analyzed the role of TLR-3 stimulation for skewing M2-macrophages to M1 at mRNA and protein level through qRT-PCR, flow cytometry, western blotting, and ELISA. The effectiveness of TLR-3L stimulation to revert M2-macrophages to M1 was evaluated in the murine tumor model. To determine the role of IFN-αß signaling in vitro and in vivo, we used Ifnar1-/- macrophages and anti-IFN-αß antibodies, respectively. We observed upregulation of M1-specific markers MHC-II and costimulatory molecules like CD86, CD80, and CD40 on M2-macrophages upon TLR-3 stimulation. In contrast, reduced expression of M2-indicators CD206, Tim-3, and pro-inflammatory cytokines was noticed. The administration of TLR-3L in the murine tumor reverted the M2-macrophages to M1-phenotype and regressed the tumor growth. The mechanism deciphered for macrophage reversion and controlling the tumor growth is dependent on IFN-αß signaling pathway. The results indicate that the signaling through TLR-3 is important in protection against tumors by skewing M2-macrophages to protective M1-subtype.

5.
PLoS One ; 12(3): e0173769, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28319170

RESUMEN

Tuberculosis continues to be one of the most devastating global health problem. Its diagnosis will benefit in timely initiation of the treatment, cure and therefore reduction in the transmission of the disease. Tests are available, but none can be comprehensively relied on for its diagnosis; especially in TB-endemic zones. PhoP is a key player in Mycobacterium tuberculosis virulence but nothing has been known about its role in the diagnosis of TB. We monitored the presence of anti-PhoP antibodies in the healthy, patients and their contacts. In addition, we also measured antibodies against early secretory antigens ESAT-6 and CFP-10, and latency associated antigen Acr-1 to include proteins that are associated with the different stages of disease progression. Healthy subjects showed high antibody titer against PhoP than patients and their contacts. In addition, a distinct pattern in the ratio of Acr-1/PhoP was observed among all cohorts. This study for the first time demonstrates a novel role of anti-PhoP antibodies, as a possible marker for the diagnosis of TB and therefore will contribute in the appropriate action and management of the disease.


Asunto(s)
Formación de Anticuerpos , Proteínas Bacterianas/inmunología , Tuberculosis/inmunología , Antígenos Bacterianos/inmunología , Estudios de Casos y Controles , Voluntarios Sanos , Humanos , Recurrencia , Tuberculosis/transmisión
6.
Sci Rep ; 6: 27263, 2016 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-27265209

RESUMEN

Dendritic cells (DCs) play a crucial role in bridging innate and adaptive immunity by activating naïve T cells. The role of pattern recognition receptors like Toll-Like Receptors and Nod-Like Receptors expressed on DCs is well-defined in the recognition of the pathogens. However, nothing is precisely studied regarding the impact of NOD-2 signaling during the differentiation of DCs. Consequently, we explored the role of NOD-2 signaling in the differentiation of DCs and therefore their capability to activate innate and adaptive immunity. Intriguingly, we observed that NOD-2 stimulated DCs (nDCs) acquired highly activated and matured phenotype and exhibited substantially greater bactericidal activity by robust production of nitric oxide. The mechanism involved in improving the functionality of nDCs was dependent on IFN-αß signaling, leading to the activation of STAT pathways. Furthermore, we also observed that STAT-1 and STAT-4 dependent maturation and activation of DCs was under the feedback mechanism of SOCS-1 and SOCS-3 proteins. nDCs acquired enhanced potential to activate chiefly Th1 and Th17 immunity. Taken together, these results suggest that nDCs can be exploited as an immunotherapeutic agent in bolstering host immunity and imparting protection against the pathogens.


Asunto(s)
Células de la Médula Ósea/citología , Células de la Médula Ósea/inmunología , Células Dendríticas/citología , Células Dendríticas/inmunología , Proteína Adaptadora de Señalización NOD2/metabolismo , Inmunidad Adaptativa , Animales , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/microbiología , Diferenciación Celular , Células Cultivadas , Células Dendríticas/metabolismo , Células Dendríticas/microbiología , Inmunidad Innata , Interferón-alfa/metabolismo , Interferón beta/metabolismo , Ratones , Mycobacterium/crecimiento & desarrollo , Factores de Transcripción STAT/metabolismo , Transducción de Señal , Células TH1/inmunología , Células TH1/metabolismo , Células Th17/inmunología , Células Th17/metabolismo
7.
Sci Rep ; 6: 19084, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26754352

RESUMEN

T cells play a cardinal role in mediating protection against intracellular pathogens like Mycobacterium tuberculosis (Mtb). It is important to understand the factors that govern the T cell response; thereby can modulate its activity. Dendritic cells (DCs) are the major player in initiation and augmentation of T cell response. Targeting DCs to induce their optimum maturation and activation can lead to a better T cell response. Interestingly, we observed that combinatorial signaling of DCs through NOD-2 and TLR-4 fortified better yield of IL-12p40/70, IL-6 and IFN-γ and upregulated the expression of CD40, CD80 and CD86 costimulatory molecules. Further, we noticed improved phagocytic capabilities of DCs. Furthermore, NOD-2 and TLR-4 induced autophagy in DCs, which enhanced the activation of T cells. This study signifies that NOD-2 and TLR-4 exhibit synergism in invigorating the activity of DCs. Consequently, this strategy may have significant immunotherapeutic potential in bolstering the function of DCs and thus improving the immunity against pathogens.


Asunto(s)
Autofagia , Reactividad Cruzada , Células Dendríticas/metabolismo , Proteína Adaptadora de Señalización NOD2/metabolismo , Transducción de Señal , Linfocitos T/metabolismo , Receptor Toll-Like 4/metabolismo , Animales , Diferenciación Celular , Citocinas/metabolismo , Ratones Endogámicos C57BL , Fagocitosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...