Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38853876

RESUMEN

FGF23 via its coreceptor αKlotho (KL) provides critical control of phosphate metabolism, which is altered in rare and very common syndromes, however the spatial-temporal mechanisms dictating renal FGF23 functions remain poorly understood. Thus, developing approaches to modify specific FGF23-dictated pathways has proven problematic. Herein, wild type mice were injected with rFGF23 for 1, 4 and 12h and renal FGF23 bioactivity was determined at single cell resolution. Computational analysis identified distinct epithelial, endothelial, stromal, and immune cell clusters, with differential expressional analysis uniquely tracking FGF23 bioactivity at each time point. FGF23 actions were sex independent but critically relied upon constitutive KL expression mapped within proximal tubule (S1-S3) and distal tubule (DCT/CNT) cell sub-populations. Temporal KL-dependent FGF23 responses drove unique and transient cellular identities, including genes in key MAPK- and vitamin D-metabolic pathways via early- (AP-1-related) and late-phase (EIF2 signaling) transcriptional regulons. Combining ATACseq/RNAseq data from a cell line stably expressing KL with the in vivo scRNAseq pinpointed genomic accessibility changes in MAPK-dependent genes, including the identification of FGF23-dependent EGR1 distal enhancers. Finally, we isolated unexpected crosstalk between FGF23-mediated MAPK signaling and pro-inflammatory TNF receptor activation via NF-κB, which blocked FGF23 bioactivity in vitro and in vivo . Collectively, our findings have uncovered novel pathways at the single cell level that likely influence FGF23-dependent disease mechanisms. Translational statement: Inflammation and elevated FGF23 in chronic kidney disease (CKD) are both associated with poor patient outcomes and mortality. However, the links between these manifestations and the effects of inflammation on FGF23-mediated mineral metabolism within specific nephron segments remain unclear. Herein, we isolated an inflammatory pathway driven by TNF/NF-κB associated with regulating FGF23 bioactivity. The findings from this study could be important in designing future therapeutic approaches for chronic mineral diseases, including potential combination therapies or early intervention strategies. We also suggest that further studies could explore these pathways at the single cell level in CKD models, as well as test translation of our findings to interactions of chronic inflammation and elevated FGF23 in human CKD kidney datasets.

2.
Front Endocrinol (Lausanne) ; 14: 1063083, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36777346

RESUMEN

Introduction: Due to a lack of spatial-temporal resolution at the single cell level, the etiologies of the bone dysfunction caused by diseases such as normal aging, osteoporosis, and the metabolic bone disease associated with chronic kidney disease (CKD) remain largely unknown. Methods: To this end, flow cytometry and scRNAseq were performed on long bone cells from Sost-cre/Ai9+ mice, and pure osteolineage transcriptomes were identified, including novel osteocyte-specific gene sets. Results: Clustering analysis isolated osteoblast precursors that expressed Tnc, Mmp13, and Spp1, and a mature osteoblast population defined by Smpd3, Col1a1, and Col11a1. Osteocytes were demarcated by Cd109, Ptprz1, Ramp1, Bambi, Adamts14, Spns2, Bmp2, WasI, and Phex. We validated our in vivo scRNAseq using integrative in vitro promoter occupancy via ATACseq coupled with transcriptomic analyses of a conditional, temporally differentiated MSC cell line. Further, trajectory analyses predicted osteoblast-to-osteocyte transitions via defined pathways associated with a distinct metabolic shift as determined by single-cell flux estimation analysis (scFEA). Using the adenine mouse model of CKD, at a time point prior to major skeletal alterations, we found that gene expression within all stages of the osteolineage was disturbed. Conclusion: In sum, distinct populations of osteoblasts/osteocytes were defined at the single cell level. Using this roadmap of gene assembly, we demonstrated unrealized molecular defects across multiple bone cell populations in a mouse model of CKD, and our collective results suggest a potentially earlier and more broad bone pathology in this disease than previously recognized.


Asunto(s)
Insuficiencia Renal Crónica , Transcriptoma , Ratones , Animales , Huesos/metabolismo , Osteoblastos/metabolismo , Hueso Cortical/metabolismo , Insuficiencia Renal Crónica/patología , Proteínas de la Membrana/metabolismo , Esfingomielina Fosfodiesterasa/metabolismo
3.
Nat Rev Nephrol ; 19(3): 185-193, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36624273

RESUMEN

The bone-derived hormone fibroblast growth factor 23 (FGF23) functions in concert with parathyroid hormone (PTH) and the active vitamin D metabolite, 1,25(OH)2 vitamin D (1,25D), to control phosphate and calcium homeostasis. A rise in circulating levels of phosphate and 1,25D leads to FGF23 production in bone. Circulating FGF23 acts on the kidney by binding to FGF receptors and the co-receptor α-Klotho to promote phosphaturia and reduce circulating 1,25D levels. Various other biomolecules that are produced by the kidney, including lipocalin-2, glycerol 3-phosphate, 1-acyl lysophosphatidic acid and erythropoietin, are involved in the regulation of mineral metabolism via effects on FGF23 synthesis in bone. Understanding of the molecular mechanisms that control FGF23 synthesis in the bone and its bioactivity in the kidney has led to the identification of potential targets for novel interventions. Emerging approaches to target aberrant phosphate metabolism include small molecule inhibitors that directly bind FGF23 and prevent its interactions with FGF receptors and α-Klotho, FGF23 peptide fragments that act as competitive inhibitors of intact FGF23 and small molecule inhibitors of kidney sodium-phosphate cotransporters.


Asunto(s)
Huesos , Factor-23 de Crecimiento de Fibroblastos , Riñón , Humanos , Huesos/metabolismo , Factor-23 de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Riñón/metabolismo , Proteínas Klotho , Fosfatos/metabolismo , Vitamina D
4.
Bone Res ; 11(1): 7, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36650133

RESUMEN

Osteocytes act within a hypoxic environment to control key steps in bone formation. FGF23, a critical phosphate-regulating hormone, is stimulated by low oxygen/iron in acute and chronic diseases, however the molecular mechanisms directing this process remain unclear. Our goal was to identify the osteocyte factors responsible for FGF23 production driven by changes in oxygen/iron utilization. Hypoxia-inducible factor-prolyl hydroxylase inhibitors (HIF-PHI) which stabilize HIF transcription factors, increased Fgf23 in normal mice, as well as in osteocyte-like cells; in mice with conditional osteocyte Fgf23 deletion, circulating iFGF23 was suppressed. An inducible MSC cell line ('MPC2') underwent FG-4592 treatment and ATACseq/RNAseq, and demonstrated that differentiated osteocytes significantly increased HIF genomic accessibility versus progenitor cells. Integrative genomics also revealed increased prolyl hydroxylase Egln1 (Phd2) chromatin accessibility and expression, which was positively associated with osteocyte differentiation. In mice with chronic kidney disease (CKD), Phd1-3 enzymes were suppressed, consistent with FGF23 upregulation in this model. Conditional loss of Phd2 from osteocytes in vivo resulted in upregulated Fgf23, in line with our findings that the MPC2 cell line lacking Phd2 (CRISPR Phd2-KO cells) constitutively activated Fgf23 that was abolished by HIF1α blockade. In vitro, Phd2-KO cells lost iron-mediated suppression of Fgf23 and this activity was not compensated for by Phd1 or -3. In sum, osteocytes become adapted to oxygen/iron sensing during differentiation and are directly sensitive to bioavailable iron. Further, Phd2 is a critical mediator of osteocyte FGF23 production, thus our collective studies may provide new therapeutic targets for skeletal diseases involving disturbed oxygen/iron sensing.

5.
Physiol Rep ; 10(11): e15307, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35656701

RESUMEN

Ferric citrate (FC) is an approved therapy for chronic kidney disease (CKD) patients as a phosphate (Pi) binder for dialysis-dependent CKD, and for iron deficiency anemia (IDA) in non-dialysis CKD. Elevated Pi and IDA both lead to increased FGF23, however, the roles of iron and FGF23 during CKD remain unclear. To this end, iron and Pi metabolism were tested in a mouse model of CKD (0.2% adenine) ± 0.5% FC for 6 weeks, with and without osteocyte deletion of Fgf23 (flox-Fgf23/Dmp1-Cre). Intact FGF23 (iFGF23) increased in all CKD mice but was lower in Cre+ mice with or without FC, thus the Dmp1-Cre effectively reduced FGF23. Cre+ mice fed AD-only had higher serum Pi than Cre- pre- and post-diet, and the Cre+ mice had higher BUN regardless of FC treatment. Total serum iron was higher in all mice receiving FC, and liver Tfrc, Bmp6, and hepcidin mRNAs were increased regardless of genotype; liver IL-6 showed decreased mRNA in FC-fed mice. The renal 1,25-dihydroxyvitamin D (1,25D) anabolic enzyme Cyp27b1 had higher mRNA and the catabolic Cyp24a1 showed lower mRNA in FC-fed mice. Finally, mice with loss of FGF23 had higher bone cortical porosity, whereas Raman spectroscopy showed no changes in matrix mineral parameters. Thus, FC- and FGF23-dependent and -independent actions were identified in CKD; loss of FGF23 was associated with higher serum Pi and BUN, demonstrating that FGF23 was protective of mineral metabolism. In contrast, FC maintained serum iron and corrected inflammation mediators, potentially providing ancillary benefit.


Asunto(s)
Factores de Crecimiento de Fibroblastos , Hierro , Insuficiencia Renal Crónica , Animales , Ácido Cítrico , Modelos Animales de Enfermedad , Electrólitos , Compuestos Férricos , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/metabolismo , Humanos , Hierro/metabolismo , Ratones , Minerales , ARN Mensajero/metabolismo , Insuficiencia Renal Crónica/metabolismo
6.
Curr Opin Nephrol Hypertens ; 31(4): 320-325, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35703246

RESUMEN

PURPOSE OF REVIEW: Chronic kidney disease (CKD) is a progressive disorder that is associated with development of elevated fibroblast growth factor 23 (FGF23) levels and anemia. Here, we review recent literature that extends our current knowledge on the interactions between FGF23 and anemia in CKD and the impact of anemia-targeting therapeutics on FGF23 elevation in CKD. RECENT FINDINGS: The anemia of CKD is primarily driven by a lack of erythropoietin (EPO) and iron deficiency. In addition to EPO and iron replacement, novel drug classes to treat anemia have been approved or are in clinical development. A recent observational study provides supportive evidence for the hypothesis that FGF23 elevation in CKD mediates adverse effects of iron deficiency on the cardiovascular system in patients with CKD. Preclinical and clinical studies revealed that ferric citrate (FC), and hypoxia-induced factor-prolyl hydroxylase inhibitor (HIF-PHI) treatment may reduce elevated FGF23 levels in CKD, suggesting that correcting anemia in CKD could potentially lower FGF23 levels. However, as we describe, HIF-PHI have context-dependent effects. Moreover, whether a reduction in FGF23 will improve patient outcomes in patients with CKD remains to be determined. SUMMARY: With the emergence of novel therapeutics to treat oxygen and iron utilization deficits in CKD, studies have investigated the impact of these new drugs on FGF23. Several of these drugs, including FC and HIF-PHIs, alleviate iron homeostasis alterations in CKD and are associated with FGF23 reduction. Herein, we review the relationships between oxygen/iron sensing and FGF23 in CKD, recent findings which link FGF23 with cardiac dysfunction, as well as future translational and clinical avenues.


Asunto(s)
Anemia , Insuficiencia Renal Crónica , Anemia/tratamiento farmacológico , Anemia/etiología , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/metabolismo , Homeostasis , Humanos , Hierro/uso terapéutico , Oxígeno , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/metabolismo
7.
J Bone Miner Res ; 36(6): 1117-1130, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33592127

RESUMEN

Fibroblast growth factor-23 (FGF23) is a critical factor in chronic kidney disease (CKD), with elevated levels causing alterations in mineral metabolism and increased odds for mortality. Patients with CKD develop anemia as the kidneys progressively lose the ability to produce erythropoietin (EPO). Anemia is a potent driver of FGF23 secretion; therefore, a hypoxia-inducible factor prolyl hydroxylase inhibitor (HIF-PHI) currently in clinical trials to elevate endogenous EPO to resolve anemia was tested for effects on iron utilization and FGF23-related parameters in a CKD mouse model. Mice were fed either a casein control diet or an adenine-containing diet to induce CKD. The CKD mice had markedly elevated iFGF23 and blood urea nitrogen (BUN), hyperphosphatemia, and anemia. Cohorts of mice were then treated with a patient-equivalent dose of BAY 85-3934 (BAY; Molidustat), which elevated EPO and completely resolved aberrant complete blood counts (CBCs) in the CKD mice. iFGF23 was elevated in vehicle-treated CKD mice (120-fold), whereas circulating iFGF23 was significantly attenuated (>60%) in the BAY-treated CKD mice. The BAY-treated mice with CKD also had reduced BUN, but there was no effect on renal vitamin D metabolic enzyme expression. Consistent with increased EPO, bone marrow Erfe, Transferrin receptor (Tfrc), and EpoR mRNAs were increased in BAY-treated CKD mice, and in vitro hypoxic marrow cultures increased FGF23 with direct EPO treatment. Liver Bmp-6 and hepcidin expression were downregulated in all BAY-treated groups. Femur trabecular parameters and cortical porosity were not worsened with BAY administration. In vitro, differentiated osteocyte-like cells exposed to an iron chelator to simulate iron depletion/hypoxia increased FGF23; repletion with holo-transferrin completely suppressed FGF23 and normalized Tfrc1. Collectively, these results support that resolving anemia using a HIF-PHI during CKD was associated with lower BUN and reduced FGF23, potentially through direct restoration of iron utilization, thus providing modifiable outcomes beyond improving anemia for this patient population. © 2021 American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Anemia , Insuficiencia Renal Crónica , Anemia/tratamiento farmacológico , Animales , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos , Humanos , Ratones , Pirazoles , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/tratamiento farmacológico , Triazoles
8.
Cell Rep ; 34(4): 108665, 2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33503417

RESUMEN

FGF23 interacts with a FGFR/KL-receptor complex to propagate cellular signaling, where its C-terminal C26 peptide is critical for engaging the co-receptor KL. We identify a distinct peptide sequence C28 residing in the FGF23 C terminus that regulates its interaction with KL. C28 can independently function as an FGF23 antagonist, and we report an optimized peptide antagonist of much enhanced potency. FGF23 can use either of the two C-terminal sites to exert biological effects, as shown by in vitro and in vivo studies. The loss of both KL-interaction sites inactivates the protein. We conclude that the C terminus of FGF23 is a bidentate ligand possessing two independent KL-interaction sites. The identification of this second KL-association site provides an additional perspective in the molecular basis of FGF23-receptor signaling and raises questions pertaining to its structural mechanism of action and the potential for biased biological signaling.


Asunto(s)
Membrana Celular/metabolismo , Factor-23 de Crecimiento de Fibroblastos/metabolismo , Animales , Humanos , Ratones
9.
Haematologica ; 106(2): 391-403, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-32193252

RESUMEN

Hypoferremia results as an acute phase response to infection and inflammation aiming to reduce iron availability to pathogens. Activation of toll-like receptors (TLRs), the key sensors of the innate immune system, induces hypoferremia mainly through the rise of the iron hormone hepcidin. Conversely, stimulation of erythropoiesis suppresses hepcidin expression via induction of the erythropoietin-responsive hormone erythroferrone. Iron deficiency stimulates transcription of the osteocyte-secreted protein FGF23. Here we hypothesized that induction of FGF23 in response to TLR4 activation is a potent contributor to hypoferremia and, thus, impairment of its activity may alleviate hypoferremia induced by lipopolysaccharide (LPS), a TLR 4 agonist. We used the C-terminal tail of FGF23 to impair endogenous full-length FGF23 signaling in wild-type mice, and investigated its impact on hypoferremia. Our data show that FGF23 is induced as early as pro-inflammatory cytokines in response to LPS, followed by upregulation of hepcidin and downregulation of erythropoietin (Epo) expression in addition to decreased serum iron and transferrin saturation. Further, LPS-induced hepatic and circulating hepcidin were significantly reduced by FGF23 signaling disruption. Accordingly, iron sequestration in liver and spleen caused by TLR4 activation was completely abrogated by FGF23 signaling inhibition, resulting in alleviation of serum iron and transferrin saturation deficit. Taken together, our studies highlight for the first time that inhibition of FGF23 signaling alleviates LPS-induced acute hypoferremia.


Asunto(s)
Hepcidinas , Hierro , Animales , Péptido C , Eritropoyesis , Factor-23 de Crecimiento de Fibroblastos , Hepcidinas/genética , Inflamación/tratamiento farmacológico , Ratones
11.
Artículo en Inglés | MEDLINE | ID: mdl-32982979

RESUMEN

Osteocytes, which represent up to 95% of adult skeletal cells, are deeply embedded in bone. These cells exhibit important interactive abilities with other bone cells such as osteoblasts and osteoclasts to control skeletal formation and resorption. Beyond this local role, osteocytes can also influence the function of distant organs due to the presence of their sophisticated lacunocanalicular system, which connects osteocyte dendrites directly to the vasculature. Through these networks, osteocytes sense changes in circulating metabolites and respond by producing endocrine factors to control homeostasis. One critical function of osteocytes is to respond to increased blood phosphate and 1,25(OH)2 vitamin D (1,25D) by producing fibroblast growth factor-23 (FGF23). FGF23 acts on the kidneys through partner fibroblast growth factor receptors (FGFRs) and the co-receptor Klotho to promote phosphaturia via a downregulation of phosphate transporters, as well as the control of vitamin D metabolizing enzymes to reduce blood 1,25D. In the first part of this review, we will explore the signals involved in the positive and negative regulation of FGF23 in osteocytes. In the second portion, we will bridge bone responses with the review of current knowledge on FGF23 endocrine functions in the kidneys.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Glucuronidasa/metabolismo , Enfermedades Renales/metabolismo , Riñón/metabolismo , Osteocitos/metabolismo , Animales , Factor-23 de Crecimiento de Fibroblastos , Humanos , Proteínas Klotho , Transducción de Señal/fisiología
12.
Nature ; 2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32737454
13.
Physiol Rep ; 8(11): e14434, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32476270

RESUMEN

Iron-deficiency anemia is a potent stimulator of the phosphaturic hormone Fibroblast growth factor-23 (FGF23). Anemia, elevated FGF23, and elevated serum phosphate are significant mortality risk factors for patients with chronic kidney disease (CKD). However, the contribution of anemia to overall circulating FGF23 levels in CKD is not understood. Our goal was to investigate the normalization of iron handling in a CKD model using the erythropoiesis stimulating agents (ESAs) Erythropoietin (EPO) and the hypoxia-inducible factor prolyl hydroxylase inhibitor (HIF-PHDi) FG-4592, on the production of, and outcomes associated with, changes in bioactive, intact FGF23 ("iFGF23"). Our hypothesis was that rescuing the prevailing anemia in a model of CKD would reduce circulating FGF23. Wild-type mice were fed an adenine-containing diet to induce CKD, then injected with EPO or FG-4592. The mice with CKD were anemic, and EPO improved red blood cell indices, whereas FG-4592 increased serum EPO and bone marrow erythroferrone (Erfe), and decreased liver ferritin, bone morphogenic protein-6 (Bmp-6), and hepcidin mRNAs. In the mice with CKD, iFGF23 was markedly elevated in control mice but was attenuated by >70% after delivery of either ESA, with no changes in serum phosphate. ESA treatment also reduced renal fibrosis markers, as well as increased Cyp27b1 and reduced Cyp24a1 mRNA expression. Thus, improvement of iron utilization in a CKD model using EPO and a HIF-PHDi significantly reduced iFGF23, demonstrating that anemia is a primary driver of FGF23, and that management of iron utilization in patients with CKD may translate to modifiable outcomes in mineral metabolism.


Asunto(s)
Eritropoyetina/administración & dosificación , Factores de Crecimiento de Fibroblastos/sangre , Prolina Dioxigenasas del Factor Inducible por Hipoxia/antagonistas & inhibidores , Inhibidores de Prolil-Hidroxilasa/administración & dosificación , Insuficiencia Renal Crónica/sangre , Anemia/sangre , Animales , Proteína Morfogenética Ósea 6/sangre , Citocinas/sangre , Modelos Animales de Enfermedad , Eritropoyetina/sangre , Femenino , Factor-23 de Crecimiento de Fibroblastos , Hepcidinas/sangre , Ratones Endogámicos C57BL , Proteínas Musculares/sangre
14.
Pharmaceuticals (Basel) ; 12(2)2019 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-31108902

RESUMEN

Iron is an essential element that is required for oxygen transfer, redox, and metabolic activities in mammals and bacteria. Mycobacteria, some of the most prevalent infectious agents in the world, require iron as growth factor. Mycobacterial-infected hosts set up a series of defense mechanisms, including systemic iron restriction and cellular iron distribution, whereas mycobacteria have developed sophisticated strategies to acquire iron from their hosts and to protect themselves from iron's harmful effects. Therefore, it is assumed that host iron and iron-binding proteins, and natural or synthetic chelators would be keys targets to inhibit mycobacterial proliferation and may have a therapeutic potential. Beyond this hypothesis, recent evidence indicates a host protective effect of iron against mycobacterial infections likely through promoting remodeled immune response. In this review, we discuss experimental procedures and clinical observations that highlight the role of the immune response against mycobacteria under various iron availability conditions. In addition, we discuss the clinical relevance of our knowledge regarding host susceptibility to mycobacteria in the context of iron availability and suggest future directions for research on the relationship between host iron and the immune response and the use of iron as a therapeutic agent.

15.
PLoS One ; 13(5): e0196921, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29771935

RESUMEN

Macrophages play crucial roles in innate immune response and in the priming of adaptive immunity, and are characterized by their phenotypic heterogeneity and plasticity. Reprogramming intracellular metabolism in response to microenvironmental signals is required for M1/M2 macrophage polarization and function. Here we assessed the influence of iron on the polarization of the immune response in vivo and in vitro. Iron-enriched diet increased M2 marker Arg1 and Ym1 expression in liver and peritoneal macrophages, while iron deficiency decreased Arg1 expression. Under LPS-induced inflammatory conditions, low iron diet exacerbated the proinflammatory response, while the IL-12/IL-10 balance decreased with iron-rich diet, thus polarizing toward type 2 response. Indeed, in vitro macrophage iron loading reduced the basal percentage of cells expressing M1 co-stimulatory CD86 and MHC-II molecules. Further, iron loading of macrophages prevented the pro-inflammatory response induced by LPS through reduction of NF-κB p65 nuclear translocation with decreased iNOS, IL-1ß, IL-6, IL-12 and TNFα expression. The increase of intracellular iron also reduced LPS-induced hepcidin gene expression and abolished ferroportin down-regulation in macrophages, in line with macrophage polarization. Thus, iron modulates the inflammatory response outcome, as elevated iron levels increased M2 phenotype and negatively regulated M1 proinflammatory LPS-induced response.


Asunto(s)
Polaridad Celular , Hierro/metabolismo , Macrófagos Peritoneales/metabolismo , Animales , Arginasa/biosíntesis , Citocinas/biosíntesis , Regulación de la Expresión Génica/efectos de los fármacos , Inflamación/inducido químicamente , Inflamación/metabolismo , Inflamación/patología , Hierro/farmacología , Lectinas/biosíntesis , Lipopolisacáridos/toxicidad , Hígado/metabolismo , Hígado/patología , Macrófagos Peritoneales/patología , Ratones , Óxido Nítrico Sintasa de Tipo II/biosíntesis , beta-N-Acetilhexosaminidasas/biosíntesis
16.
FASEB J ; 32(7): 3752-3764, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29481308

RESUMEN

Severe anemia and iron deficiency are common complications in chronic kidney disease. The cause of renal anemia is multifactorial and includes decreased erythropoietin (Epo) production, iron deficiency, and inflammation, and it is currently treated with injections of synthetic Epo. However, the use of recombinant Epo has several adverse effects. We previously reported that high fibroblast growth factor 23 (FGF23) levels in mice are associated with decreased red blood cell production, whereas genetic inactivation of Fgf23 results in expansion of the erythroid lineage. The present study is the first to show that high FGF23 levels in a mouse model of renal failure contribute to renal anemia, and inhibiting FGF23 signaling stimulates erythropoiesis and abolishes anemia and iron deficiency. Moreover, we show that inhibition of FGF23 signaling significantly decreases erythroid cell apoptosis and influences the commitment of hematopoietic stem cells toward the erythroid linage. Furthermore, we show that blocking FGF23 signaling attenuates inflammation, resulting in increased serum iron and ferritin levels. Our data clearly demonstrate that elevated FGF23 is a causative factor in the development of renal anemia and iron deficiency, and importantly, blocking FGF23 signaling represents a novel approach to stimulate erythropoiesis and possibly improve survival for millions of chronic kidney disease patients worldwide.-Agoro, R., Montagna, A., Goetz, R., Aligbe, O., Singh, G., Coe, L. M., Mohammadi, M., Rivella, S., Sitara, D. Inhibition of fibroblast growth factor 23 (FGF23) signaling rescues renal anemia.


Asunto(s)
Anemia Ferropénica/metabolismo , Factores de Crecimiento de Fibroblastos/antagonistas & inhibidores , Insuficiencia Renal Crónica/complicaciones , Transducción de Señal , Anemia Ferropénica/tratamiento farmacológico , Animales , Apoptosis , Células Cultivadas , Células Eritroides/metabolismo , Ferritinas/sangre , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Hierro/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Oligopéptidos/farmacología , Oligopéptidos/uso terapéutico
17.
J Infect Dis ; 216(7): 907-918, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-28973651

RESUMEN

Background: Recent evidence indicates a robust competition between the host and mycobacteria for iron acquisition during mycobacterial infection. Variable effects of iron supplementation on the susceptibility to mycobacterial infection have been reported. In this study, we revisited the effects of an experimental iron-enriched diet on Mycobacterium bovis bacille Calmette-Guerin (BCG) infection. Methods: Mice fed a standard diet or a diet moderately enriched with iron were infected with M. bovis BCG expressing green fluorescent protein. Colony-forming unit numbers, host myeloid cell counts, cell recruitment, cytokine production, and iron gene expression were determined at different stages of infection. Bone marrow-derived macrophages incubated with or without iron were also used to measure bacterial uptake, levels of inflammation markers, and iron gene expression. Results: In vivo analysis of BCG-infected mice revealed that moderate iron supplementation reduced inflammation, as measured by decreased proinflammatory cytokine levels and neutrophil recruitment and enhanced T-cell recruitment in granulomas, and decreased the bacterial load. Enhanced bacterial clearance in the liver correlated with upregulation of the gene encoding hepcidin, which is known to have antimicrobial proprieties, and with sequestration of iron in tissues. In cultured macrophages, iron supplementation induced reactive oxygen species and reduced uptake and intracellular growth of BCG. Conclusion: Moderate iron diet supplementation diminished inflammation and growth of M. bovis BCG via enhanced reactive oxygen species production, immune cell activation, and local hepcidin expression.


Asunto(s)
Citocinas/metabolismo , Hepcidinas/metabolismo , Hierro de la Dieta/farmacología , Mycobacterium bovis/inmunología , Linfocitos T/fisiología , Tuberculosis/microbiología , Animales , Citocinas/genética , Hepcidinas/genética , Hierro/metabolismo , Hígado/metabolismo , Hígado/microbiología , Pulmón/metabolismo , Pulmón/microbiología , Ratones , Tuberculosis/inmunología , Regulación hacia Arriba
18.
Blood Cells Mol Dis ; 61: 16-25, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27667162

RESUMEN

Iron is essential in all organisms. In mammals systemic iron homeostasis relies on hepcidin, a peptide hormone with defensin properties, and its target, the cell iron exporter ferroportin. Hepcidin and ferroportin transcription are both upregulated by high iron levels, but are inversely regulated upon inflammation, leading to hypoferremia. Thus, host iron genes regulation may affect the innate immune responses against infectious microorganisms. Since macrophages, which are crucial innate immune cells, express both hepcidin and ferroportin, we explored in these cells their transcriptional regulation upon inflammation which is not completely understood. Macrophages represent an heterogenous population of immune cells resulting from cytokine and pathogen sensing, indeed macrophages polarized especially into pro-inflammatory M1 and regulatory/anti-inflammatory M2 phenotypes. We found that hepcidin mRNA upregulation depends on M1 polarization and ferroportin mRNA downregulation depends on M2 subtype polarization. All TLR agonists, except TLR2 agonist, polarize to pro-inflammatory macrophages and upregulate hepcidin mRNA expression. Cell pretreatment with IFNγ or inhibitor of PI3K, p38-MAPK and NF-κB pathway involved in M1 polarization prior TLR4 activation, enhanced hepcidin upregulation. Conversely, ferroportin mRNA downregulation upon inflammation was strongly increased by macrophage polarization through TLR2- and 4-PI3K-dependent pathways, or through IL-1ß and TNFα priming prior to LPS activation.


Asunto(s)
Proteínas de Transporte de Catión/genética , Regulación de la Expresión Génica/inmunología , Hepcidinas/genética , Inflamación/metabolismo , Macrófagos/citología , Animales , Células de la Médula Ósea/citología , Polaridad Celular , Humanos , Inmunidad Innata , Inflamación/inmunología , Inflamación/patología , Hígado/citología , Macrófagos/inmunología , Macrófagos Peritoneales , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/metabolismo
19.
Eur J Immunol ; 46(11): 2531-2541, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27569535

RESUMEN

Allergic asthma is characterized by a strong Th2 response with inflammatory cell recruitment and structural changes in the lung. Papain is a protease allergen disrupting the airway epithelium triggering a rapid inflammation with eosinophilia mediated by innate lymphoid cell activation (ILC2) and leading to a Th2 immune response. In this study, we focused on inflammatory responses to a single exposure to papain and showed that intranasal administration of papain results in the recruitment of inflammatory cells, including neutrophils and eosinophils with a rapid production of IL-1α, IL-1ß, and IL-33. The inflammatory response is abrogated in the absence of IL-1R1 and MyD88. To decipher the cell type(s) involved in MyD88-dependent IL-1R1/MyD88 signaling, we used new cell-specific MyD88-deficient mice and found that the deletion of MyD88 signaling in single cell types such as T cells, epithelial cells, CD11c-positive or myeloid cells leads to only a partial inhibition compared to complete absence of MyD88, suggesting that several cell types contribute to the response. Importantly, the inflammatory response is largely ST2 and IL-36R independent. In conclusion, IL-1R1 signaling via MyD88 is critical for the first step of inflammatory response to papain.


Asunto(s)
Alérgenos/inmunología , Inmunidad Innata , Pulmón/inmunología , Factor 88 de Diferenciación Mieloide/metabolismo , Papaína/inmunología , Neumonía/inmunología , Receptores Tipo I de Interleucina-1/metabolismo , Alérgenos/administración & dosificación , Animales , Eosinófilos/inmunología , Interleucina-1alfa/metabolismo , Interleucina-1beta/metabolismo , Interleucina-33/metabolismo , Pulmón/fisiopatología , Ratones , Factor 88 de Diferenciación Mieloide/deficiencia , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/inmunología , Neutrófilos/inmunología , Papaína/administración & dosificación , Receptores de Interleucina-1/inmunología , Receptores de Interleucina-1/metabolismo , Receptores Tipo I de Interleucina-1/inmunología , Transducción de Señal , Células Th2/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...