Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomater Adv ; 161: 213887, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38735199

RESUMEN

Critical size bone defects cannot heal without aid and current clinical approaches exhibit some limitations, underling the need for novel solutions. Silk fibroin, derived from silkworms, is widely utilized in tissue engineering and regenerative medicine due to its remarkable properties, making it a promising candidate for bone tissue regeneration in vitro and in vivo. However, the clinical translation of silk-based materials requires refinements in 3D architecture, stability, and biomechanical properties. In earlier research, improved mechanical resistance and stability of chemically crosslinked methacrylate silk fibroin (Sil-Ma) sponges over physically crosslinked counterparts were highlighted. Furthermore, the influence of photo-initiator and surfactant concentrations on silk properties was investigated. However, the characterization of sponges with Sil-Ma solution concentrations above 10 % (w/V) was hindered by production optimization challenges, with only cell viability assessed. This study focuses on the evaluation of methacrylate sponges' suitability as temporal bone tissue regeneration scaffolds. Sil-Ma sponge fabrication at a fixed concentration of 20 % (w/V) was optimized and the impact of photo-initiator (LAP) concentrations and surfactant (Tween 80) presence/absence was studied. Their effects on pore formation, silk secondary structure, mechanical properties, and osteogenic differentiation of hBM-MSCs were investigated. We demonstrated that, by tuning silk sponges' composition, the optimal combination boosted osteogenic gene expression, offering a strategy to tailor biomechanical properties for effective bone regeneration. Utilizing Design of Experiment (DoE), correlations between sponge composition, porosity, and mechanical properties are established, guiding tailored material outcomes. Additionally, correlation matrices elucidate the microstructure's influence on gene expressions, providing insights for personalized approaches in bone tissue regeneration.


Asunto(s)
Regeneración Ósea , Fibroínas , Tensoactivos , Ingeniería de Tejidos , Andamios del Tejido , Fibroínas/química , Andamios del Tejido/química , Tensoactivos/química , Animales , Ingeniería de Tejidos/métodos , Regeneración Ósea/efectos de los fármacos , Humanos , Huesos/efectos de los fármacos , Reactivos de Enlaces Cruzados/química , Osteogénesis/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Materiales Biocompatibles/química , Porosidad
2.
Bioact Mater ; 35: 122-134, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38312518

RESUMEN

The shortage of tissues and organs for transplantation is an urgent clinical concern. In situ 3D printing is an advanced 3D printing technique aimed at printing the new tissue or organ directly in the patient. The ink for this process is central to the outcomes, and must meet specific requirements such as rapid gelation, shape integrity, stability over time, and adhesion to surrounding healthy tissues. Among natural materials, silk fibroin exhibits fascinating properties that have made it widely studied in tissue engineering and regenerative medicine. However, further improvements in silk fibroin inks are needed to match the requirements for in situ 3D printing. In the present study, silk fibroin-based inks were developed for in situ applications by exploiting covalent crosslinking process consisting of a pre-photo-crosslinking prior to printing and in situ enzymatic crosslinking. Two different silk fibroin molecular weights were characterized and the synergistic effect of the covalent bonds with shear forces enhanced the shift in silk secondary structure toward ß-sheets, thus, rapid stabilization. These hydrogels exhibited good mechanical properties, stability over time, and resistance to enzymatic degradation over 14 days, with no significant changes over time in their secondary structure and swelling behavior. Additionally, adhesion to tissues in vitro was demonstrated.

3.
Materials (Basel) ; 15(17)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36079541

RESUMEN

Despite the tremendous technological advances that metal additive manufacturing (AM) has made in the last decades, there are still some major concerns guaranteeing its massive industrial application in the biomedical field. Indeed, some main limitations arise in dealing with their biological properties, specifically in terms of osseointegration. Morphological accuracy of sub-unital elements along with the printing resolution are major constraints in the design workspace of a lattice, hindering the possibility of manufacturing structures optimized for proper osteointegration. To overcome these issues, the authors developed a new hybrid multifunctional composite scaffold consisting of an AM Ti6Al4V lattice structure and a silk fibroin/gelatin foam. The composite was realized by combining laser powder bed fusion (L-PBF) of simple cubic lattice structures with foaming techniques. A combined process of foaming and electrodeposition has been also evaluated. The multifunctional scaffolds were characterized to evaluate their pore size, morphology, and distribution as well as their adhesion and behavior at the metal-polymer interface. Pull-out tests in dry and hydrated conditions were employed for the mechanical characterization. Additionally, a cytotoxicity assessment was performed to preliminarily evaluate their potential application in the biomedical field as load-bearing next-generation medical devices.

4.
Soft Matter ; 17(28): 6863-6872, 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34227640

RESUMEN

In the tissue-engineering field silk fibroin can be tailored to the target applications by modifying its secondary structure and molecular weight, and functionalizing the molecule with specific active groups linked to the amino acid side chains. To better tune the silk fibroin molecular weight and structural properties, we propose the creation of a lower molecular weight fibroin-derived material through a selective and tunable enzymatic attack on the fibroin chain. Cleavage at specific amino acid sites leads to precise silk fibroin fragmentation and, thus, lower molecular weight materials whose length and properties can be tuned with the enzyme concentration. The cleavage increased the presence of free amino groups, hence reactivity, and aqueous solutions of the resulting polymer remained stable for up to seven days. Films of fragmented fibroin were prepared and characterized, demonstrating that the fragmentation did not affect ß-sheet formation after methanol treatment, but differences were detected after the water-vapor annealing process, confirmed by structural and thermal analyses. The adopted fragmentation method is fast, controllable and precise, allowing the creation of a silk-derived material class that is stable in water, with a tunable molecular weight and secondary structure rearrangements, and is thus a versatile tool for the further tunability and modulation of bioengineered constructs.


Asunto(s)
Bombyx , Fibroínas , Animales , Estructura Secundaria de Proteína , Seda , Ingeniería de Tejidos
5.
Prog Polym Sci ; 1152021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33776158

RESUMEN

Three-dimensional (3D) printing is a transformative manufacturing strategy, allowing rapid prototyping, customization, and flexible manipulation of structure-property relationships. Proteins are particularly appealing to formulate inks for 3D printing as they serve as essential structural components of living systems, provide a support presence in and around cells and for tissue functions, and also provide the basis for many essential ex vivo secreted structures in nature. Protein-based inks are beneficial in vivo due to their mechanics, chemical and physical match to the specific tissue, and full degradability, while also to promoting implant-host integration and serving as an interface between technology and biology. Exploiting the biological, chemical, and physical features of protein-based inks can provide key opportunities to meet the needs of tissue engineering and regenerative medicine. Despite these benefits, protein-based inks impose nontrivial challenges to 3D printing such as concentration and rheological features and reconstitution of the structural hierarchy observed in nature that is a source of the robust mechanics and functions of these materials. This review introduces photo-crosslinking mechanisms and rheological principles that underpins a variety of 3D printing techniques. The review also highlights recent advances in the design, development, and biomedical utility of monolithic and composite inks from a range of proteins, including collagen, silk, fibrinogen, and others. One particular focus throughout the review is to introduce unique material characteristics of proteins, including amino acid sequences, molecular assembly, and secondary conformations, which are useful for designing printing inks and for controlling the printed structures. Future perspectives of 3D printing with protein-based inks are also provided to support the promising spectrum of biomedical research accessible to these materials.

6.
BMC Oral Health ; 21(1): 49, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33541349

RESUMEN

BACKGROUND: Peri-implant mucositis and peri-implantitis are biofilm-related diseases causing major concern in oral implantology, requiring complex anti-infective procedures or implant removal. Microbial biosurfactants emerged as new anti-biofilm agents for coating implantable devices preserving biocompatibility. This study aimed to assess the efficacy of rhamnolipid biosurfactant R89 (R89BS) to reduce Staphylococcus aureus and Staphylococcus epidermidis biofilm formation on titanium. METHODS: R89BS was physically adsorbed on titanium discs (TDs). Cytotoxicity of coated TDs was evaluated on normal lung fibroblasts (MRC5) using a lactate dehydrogenase assay. The ability of coated TDs to inhibit biofilm formation was evaluated by quantifying biofilm biomass and cell metabolic activity, at different time-points, with respect to uncoated controls. A qualitative analysis of sessile bacteria was also performed by scanning electron microscopy. RESULTS: R89BS-coated discs showed no cytotoxic effects. TDs coated with 4 mg/mL R89BS inhibited the biofilm biomass of S. aureus by 99%, 47% and 7% and of S. epidermidis by 54%, 29%, and 10% at 24, 48 and 72 h respectively. A significant reduction of the biofilm metabolic activity was also documented. The same coating applied on three commercial implant surfaces resulted in a biomass inhibition higher than 90% for S. aureus, and up to 78% for S. epidermidis at 24 h. CONCLUSIONS: R89BS-coating was effective in reducing Staphylococcus biofilm formation at the titanium implant surface. The anti-biofilm action can be obtained on several different commercially available implant surfaces, independently of their surface morphology.


Asunto(s)
Implantes Dentales , Titanio , Biopelículas , Materiales Biocompatibles Revestidos , Glucolípidos , Staphylococcus aureus , Propiedades de Superficie
7.
Nanomaterials (Basel) ; 11(2)2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33498482

RESUMEN

Biogenic calcium carbonates naturally contain ions that can be beneficial for bone regeneration and therefore are attractive resources for the production of bioactive calcium phosphates. In the present work, cuttlefish bones, mussel shells, chicken eggshells and bioinspired amorphous calcium carbonate were used to synthesize hydroxyapatite nano-powders which were consolidated into cylindrical pellets by uniaxial pressing and sintering 800-1100 °C. Mineralogical, structural and chemical composition were studied by SEM, XRD, inductively coupled plasma/optical emission spectroscopy (ICP/OES). The results show that the phase composition of the sintered materials depends on the Ca/P molar ratio and on the specific CaCO3 source, very likely associated with the presence of some doping elements like Mg2+ in eggshell and Sr2+ in cuttlebone. Different CaCO3 sources also resulted in variable densification and sintering temperature. Preliminary in vitro tests were carried out (by the LDH assay) and they did not reveal any cytotoxic effects, while good cell adhesion and proliferation was observed at day 1, 3 and 5 after seeding through confocal microscopy. Among the different tested materials, those derived from eggshells and sintered at 900 °C promoted the best cell adhesion pattern, while those from cuttlebone and amorphous calcium carbonate showed round-shaped cells and poorer cell-to-cell interconnection.

8.
Trends Biotechnol ; 39(7): 719-730, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33279280

RESUMEN

In situ 3D printing is an emerging technique designed for patient-specific needs and performed directly in the patient's tissues in the operating room. While this technology has progressed rapidly, several improvements are needed to push it forward for widespread utility, including ink formulations and optimization for in situ context. Silk fibroin inks emerge as a viable option due to the diverse range of formulations, aqueous processability, robust and tunable mechanical properties, and self-assembly via biophysical adsorption to avoid exogenous chemical or photochemical sensitizer additives, among other features. In this review, we focus on this new frontier of 3D in situ printing for tissue regeneration, where silk is proposed as candidate biomaterial ink due to the unique and useful properties of this protein polymer.


Asunto(s)
Materiales Biocompatibles , Fibroínas , Tinta , Seda , Animales , Humanos , Impresión Tridimensional/tendencias , Seda/química
9.
ACS Appl Mater Interfaces ; 12(11): 12436-12444, 2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32096397

RESUMEN

The fabrication of multifunctional materials that interface with living environments is a problem of great interest. A variety of structural design concepts have been integrated with functional materials to form biodevices and surfaces for health monitoring. In particular, approaches based on kirigami-inspired cuts can engineer flexibility in materials through the creation of patterned defects. Here, the fabrication of a biodegradable and biofunctional "silk kirigami" material is demonstrated. Mechanically flexible, free-standing, optically transparent, large-area biomaterial sheets with precisely defined and computationally designed microscale cuts can be formed using a single-step photolithographic process. Using modeling techniques, it is shown how cuts can generate remarkable "self-shielding" leading to engineered elastic behavior and deformation. As composites with conducting polymers, flexible, intrinsically electroactive sheets can be formed. Importantly, the silk kirigami sheets are biocompatible, can serve as substrates for cell culture, and be proteolytically resorbed. The unique properties of silk kirigami suggest a host of applications as transient, "green", functional biointerfaces, and flexible bioelectronics.


Asunto(s)
Materiales Biocompatibles/química , Bioingeniería/instrumentación , Fibroínas/química , Animales , Línea Celular , Ratones , Nanoestructuras/química , Resistencia a la Tracción , Andamios del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...