Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
1.
ChemSusChem ; : e202400554, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38728595

RESUMEN

Electrochemical energy storage systems based on sulfur and lithium can theoretically delivery high energy with the further benefit of low cost. However, the working mechanism of this device involves the dissolutions of sulfur to high-molecular weight lithium polysulfide (LiPs with general formula Li2Sn, n>4) in the electrolyte during the discharge process. Therefore, the resulting migration of partially dissociated LiPs, by diffusion or under the effect of the electric field, to the lithium anode activates an internal shuttle mechanism, reduces the active material and in general leads to loss of performance and a reduced cycling stability. These drawbacks poses challenges to the commercialization of Li/S cells in the short term. In this study, we report on the decoration of reduced graphene oxide with MoO3 particles to enhance interactions with LiPs and retain sulfur at the cathode side. The combination of experiments and density functional theory calculation demonstrated improvements in binding interactions between the cathode and sulfur species, enhancing the cycling stability of the Li/S half-cell.

2.
Cancer ; 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38644692

RESUMEN

BACKGROUND: Long-term daily use of aspirin reduces incidence and mortality due to colorectal cancer (CRC). This study aimed to analyze the effect of aspirin on the tumor microenvironment, systemic immunity, and on the healthy mucosa surrounding cancer. METHODS: Patients with a diagnosis of CRC operated on from 2015 to 2019 were retrospectively analyzed (METACCRE cohort). Expression of mRNA of immune surveillance-related genes (PD-L1, CD80, CD86, HLA I, and HLA II) in CRC primary cells treated with aspirin were extracted from Gene Expression Omnibus-deposited public database (GSE76583). The experiment was replicated in cell lines. The mucosal immune microenvironment of a subgroup of patients participating in the IMMUNOREACT1 (ClinicalTrials.gov NCT04915326) project was analyzed with immunohistochemistry and flow cytometry. RESULTS: In the METACCRE Cohort, 12% of 238 patients analyzed were aspirin users. Nodal metastasis was significantly less frequent (p = .008) and tumor-infiltrating lymphocyte infiltration was higher (p = .02) among aspirin users. In the CRC primary cells and selected cell lines, CD80 mRNA expression was increased following aspirin treatment (p = .001). In the healthy mucosa surrounding rectal cancer, the ratio of CD8/CD3 and epithelial cells expressing CD80 was higher in aspirin users (p = .027 and p = .034, respectively). CONCLUSIONS: These data suggested that regular aspirin use may have an active role in enhancing immunosurveillance against CRC.

3.
Gels ; 10(4)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38667667

RESUMEN

Hydrogels have emerged as versatile biomaterials with remarkable applications in biomedicine and tissue engineering. Here, we present an overview of recent and ongoing research in Italy, focusing on extracellular matrix-derived, natural, and synthetic hydrogels specifically applied to biomedicine and tissue engineering. The analyzed studies highlight the versatile nature and wide range of applicability of hydrogel-based studies. Attention is also given to the integration of hydrogels within bioreactor systems, specialized devices used in biological studies to culture cells under controlled conditions, enhancing their potential for regenerative medicine, drug discovery, and drug delivery. Despite the abundance of literature on this subject, a comprehensive overview of Italian contributions to the field of hydrogels-based biomedical research is still missing and is thus our focus for this review. Consolidating a diverse range of studies, the Italian scientific community presents a complete landscape for hydrogel use, shaping the future directions of biomaterials research. This review aspires to serve as a guide and map for Italian researchers interested in the development and use of hydrogels in biomedicine.

4.
Medicina (Kaunas) ; 60(2)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38399488

RESUMEN

Drug resistance remains one of the main causes of poor outcome in cancer therapy. It is also becoming evident that drug resistance to both chemotherapy and to antibiotics is driven by more than one mechanism. So far, there are at least eight recognized mechanisms behind such resistance. In this review, we choose to discuss one of these mechanisms, which is known to be partially driven by a class of transmembrane proteins known as ATP-binding cassette (ABC) transporters. In normal tissues, ABC transporters protect the cells from the toxic effects of xenobiotics, whereas in tumor cells, they reduce the intracellular concentrations of anticancer drugs, which ultimately leads to the emergence of multidrug resistance (MDR). A deeper understanding of the structures and the biology of these proteins is central to current efforts to circumvent resistance to both chemotherapy, targeted therapy, and antibiotics. Understanding the biology and the function of these proteins requires detailed structural and conformational information for this class of membrane proteins. For many years, such structural information has been mainly provided by X-ray crystallography and cryo-electron microscopy. More recently, mass spectrometry-based methods assumed an important role in the area of structural and conformational characterization of this class of proteins. The contribution of this technique to structural biology has been enhanced by its combination with liquid chromatography and ion mobility, as well as more refined labelling protocols and the use of more efficient fragmentation methods, which allow the detection and localization of labile post-translational modifications. In this review, we discuss the contribution of mass spectrometry to efforts to characterize some members of the ATP-binding cassette (ABC) proteins and why such a contribution is relevant to efforts to clarify the link between the overexpression of these proteins and the most widespread mechanism of chemoresistance.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Resistencia a Antineoplásicos , Microscopía por Crioelectrón , Proteínas de Neoplasias , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Transportadoras de Casetes de Unión a ATP , Antibacterianos/uso terapéutico , Adenosina Trifosfato/farmacología , Adenosina Trifosfato/uso terapéutico , Neoplasias/tratamiento farmacológico
5.
Analyst ; 149(9): 2664-2670, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38363103

RESUMEN

Normal-phase liquid chromatography (NPLC) plays a pivotal role in the rapid separation of non-polar compounds, facilitating isomer separation and finding applications in various crucial areas where aprotic solvents are necessary. Similar to reversed-phase liquid chromatography (RPLC), NPLC requires a robust and sensitive detector to unequivocally identify the analytes, such as a mass spectrometer. However, coupling NPLC with mass spectrometry (MS) poses challenges due to the incompatibility between the non-polar solvents used as the mobile phase and the primary ionization techniques employed in MS. Several analytical methods have been developed to combine NPLC with electrospray ionization (ESI), but these methods are restricted to the analysis of polar compounds. In most cases, atmospheric pressure chemical ionization (APCI) becomes necessary to expand the range of analysis applications. To overcome these limitations and fully realize the potential of NPLC-MS coupling, a technique termed liquid electron ionization-mass spectrometry (LEI-MS) can be used. LEI-MS offers a straightforward solution by enabling the effective coupling of NPLC with both low and high-resolution MS. LEI allows for the comprehensive analysis of non-polar compounds and provides a powerful tool for isomer separation and precise identification of analytes. Optimal separations, mass spectral qualities, and matches with the NIST library were obtained in both configurations, demonstrating the potential of the proposed approach.

6.
Dig Liver Dis ; 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38071180

RESUMEN

BACKGROUND & AIMS: Multiple colorectal adenomas (MCRAs) can result from APC (AFAP) or biallelic MUTYH (MAP) mutations, but most patients are wild type and referred to as non-APC/MUTYH polyposis (NAMP). We aim to examine the risk of colorectal cancer (CRC) and the role of endoscopy in managing patients with MCRAs, with a specific focus on clinical features and genotype. METHODS: Records of MRCAs between 2000 and 2022 were retrospectively analysed. Patients were divided according to the genotype (MAP vs. NAMP) and the number of categorised polyps' burden (group 1: 10-24, group 2: 25-49, and group 3: 50-99 adenomas). Predictors of outcome were CRC-free survival (CRC-FS) and Surgery free-survival (S-FS). RESULTS: 220 patients were enrolled (NAMP n = 178(80.0%)). CRC at diagnosis was more frequent in group 3 (p = 0.01), without significant differences between the genotypes (p = 0.20). At a follow-up of 83(41-164) months, 15(7%) patients developed CRC during surveillance. CRC-FS was not correlated to genotype (p = 0.07) or polyps' number (p = 0.33), while S-FS was similar in MAP and NAMP (p = 0.22) and lower in groups 2 and 3 (p = 0.0001). CONCLUSIONS: MAP and NAMP have the same CRC risk and no difference in treatment. Endoscopic surveillance compared favorably with surgery in avoiding CRC risk, even in patients with more severe colorectal polyposis.

7.
Medicina (Kaunas) ; 59(10)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37893440

RESUMEN

Mass spectrometry-based proteomics is a key player in research efforts to characterize aberrant epigenetic alterations, including histone post-translational modifications and DNA methylation. Data generated by this approach complements and enrich datasets generated by genomic, epigenetic and transcriptomics approaches. These combined datasets can provide much-needed information on various mechanisms responsible for drug resistance, the discovery and validation of potential biomarkers for different diseases, the identification of signaling pathways, and genes and enzymes to be targeted by future therapies. The increasing use of high-resolution, high-accuracy mass spectrometers combined with more refined protein labeling and enrichment procedures enhanced the role of this approach in the investigation of these epigenetic modifications. In this review, we discuss recent MS-based studies, which are contributing to current research efforts to understand certain mechanisms behind drug resistance to therapy. We also discuss how these MS-based analyses are contributing to biomarkers discovery and validation.


Asunto(s)
Histonas , Proteómica , Humanos , Proteómica/métodos , Histonas/metabolismo , Espectrometría de Masas/métodos , Biomarcadores , Resistencia a Medicamentos
8.
Heliyon ; 9(9): e19376, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37810019

RESUMEN

The selective catalytic reduction (SCR) system in automobiles using urea solution as a source of NH3 suffers from solid deposit problems in pipelines and poor efficiency during engine startup. Although direct use of high pressure NH3 is restricted due to safety concerns, which can be overcome by using solid sorbents as NH3 carrier. Strontium chloride (SrCl2) is considered the best sorbent due to its high sorption capacity; however, challenges are associated with the processing of stable engineering structures due to extraordinary volume expansion during the NH3 sorption. This study reports the fabrication of a novel structure consisting of a zeolite cage enclosing the SrCl2 pellet (SPZC) through extrusion-based 3D printing (Direct Ink Writing). The printed SPZC structure demonstrated steady sorption of NH3 for 10 consecutive cycles without significant uptake capacity and structural integrity loss. Furthermore, the structure exhibited improved sorption and desorption kinetics than pure SrCl2. The synergistic effect of zeolite as physisorbent and SrCl2 as chemisorbent in the novel composite structure enabled the low-pressure (<0.4 bar) and high-pressure (>0.4 bar) NH3 sorption, compared to pure SrCl2, which absorbed NH3 at pressures above 0.4 bar. Regeneration of SPZC composite sorbent under evacuation showed that 87.5% percent of NH3 was desorbed at 20 °C. Thus, the results demonstrate that the rationally designed novel SPZC structure offers safe and efficient storage of NH3 in the SCR system and other applications.

9.
Molecules ; 28(14)2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37513297

RESUMEN

This work aimed to develop an easy-to-use smartphone-based electrochemical biosensor to quickly assess a coffee blend's total polyphenols (Phs) content at the industrial and individual levels. The device is based on a commercial carbon-based screen-printed electrode (SPE) modified with multi-walled carbon nanotubes (CNTs) and gold nanoparticles (GNPs). At the same time, the biological recognition element, Laccase from Trametes versicolor, TvLac, was immobilized on the sensor surface by using glutaraldehyde (GA) as a cross-linking agent. The platform was electrochemically characterized to ascertain the influence of the SPE surface modification on its performance. The working electrode (WE) surface morphology characterization was obtained by scanning electron microscopy (SEM) and Fourier-transform infrared (FT-IR) imaging. All the measurements were carried out with a micro-potentiostat, the Sensit Smart by PalmSens, connected to a smartphone. The developed biosensor provided a sensitivity of 0.12 µA/µM, a linear response ranging from 5 to 70 µM, and a lower detection limit (LOD) of 2.99 µM. Afterward, the biosensor was tested for quantifying the total Phs content in coffee blends, evaluating the influence of both the variety and the roasting degree. The smartphone-based electrochemical biosensor's performance was validated through the Folin-Ciocâlteu standard method.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Nanotubos de Carbono , Nanotubos de Carbono/química , Café , Oro/química , Trametes , Espectroscopía Infrarroja por Transformada de Fourier , Teléfono Inteligente , Nanopartículas del Metal/química , Electrodos , Polifenoles , Técnicas Biosensibles/métodos , Técnicas Electroquímicas
10.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-37259350

RESUMEN

A large number of synthetic cannabinoids are included in new psychoactive substances (NPS) and constitute an open research area in analytical pharmaceutical and toxicology when methods are needed to unambiguously identify these substances and their metabolites in biological fluids. A full molecular characterization of five synthetic molecules of the URB series that is able to interact with the endocannabinoid system was achieved with a high-resolution mass spectrometry (HRMS) in positive ion electrospray ionization and collisional experiments on the protonated parent ions, obtaining characteristic fragmentation patterns. Ultra-high-performance liquid chromatography coupled with a triple quadrupole (UHPLC-MS/MS) has also been used, which can help develop methods for screening and confirming synthetic cannabinoids in biological fluids.

11.
Sci Rep ; 13(1): 6429, 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37081134

RESUMEN

One of modern analytical chemistry main challenges is providing as fast as possible results in different application fields. In this view, real-time analysis techniques are experiencing ever-increasing success as they can provide data quickly, almost without sample preparation steps. Most of real-time approaches are based on direct mass spectrometry (DMS), a method of analyzing samples without the need for separation or pre-treatment steps. Instead, the sample is directly introduced into the mass spectrometer for analysis. In this context, ambient ionization mass spectrometry (AIMS) techniques are widely represented and successfully used. Extractive-liquid sampling electron ionization-mass spectrometry (E-LEI-MS) represents a different analytical strategy that allows coupling ambient sampling with electron ionization (EI), avoiding any sample preparation step and providing identification based on the comparison with the National Institute of Standards and Technology (NIST) library spectra. E-LEI-MS consists of a dispositive for solvent release and sampling at ambient conditions coupled with an EI source of a single quadrupole mass spectrometer. A micromanipulator allows fine (x,y,z) positioning of a sampling tip. MS can operate in scan or SIM modes depending on the application goals and requirements. Several preliminary successful results were already obtained due to the highly informative EI mass spectra generation. The system was applied to the analysis of active ingredients in pharmaceutical tablets, pesticides on fruit peel, a drug of abuse (cocaine) determination in banknotes, and analysis of unknown components on painting surfaces. Both forensic and artwork applications allowed determining the spatial distribution of the analytes. Here we present a proof-of-concept of E-LEI-MS for targeted/non-targeted analysis and semi-quantitative detection.

12.
Cancers (Basel) ; 15(7)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37046719

RESUMEN

Ovarian cancer (OC) has the highest mortality rate of all gynecological malignancies due to the high prevalence of advanced stages of diagnosis and the high rate of recurrence. Furthermore, the heterogeneity of OC tumors contributes to the rapid development of resistance to conventional chemotherapy. In recent years, in order to overcome these problems, targeted therapies have been introduced in various types of tumors, including gynecological cancer. However, the lack of predictive biomarkers showing different clinical benefits limits the effectiveness of these therapies. This requires the development of preclinical models that can replicate the histological and molecular characteristics of OC subtypes. In this scenario, organoids become an important preclinical model for personalized medicine. In fact, patient-derived organoids (PDO) recapture tumor heterogeneity with the possibility of performing drug screening. However, to best reproduce the patient's characteristics, it is necessary to develop a specific extracellular matrix (ECM) and introduce a tumor microenvironment (TME), which both represent an actual object of study to improve drug screening, particularly when used in targeted therapy and immunotherapy to guide therapeutic decisions. In this review, we summarize the current state of the art for the screening of PDOs, ECM, TME, and drugs in the setting of OC, as well as discussing the clinical implications and future perspectives for the research of OC organoids.

13.
Int J Surg ; 109(3): 323-332, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37093072

RESUMEN

BACKGROUND: Studies evaluating sex differences in colorectal cancer (CRC) tumor microenvironment are limited, and no previous study has focused on rectal cancer patients' constitutive immune surveillance mechanisms. The authors aimed to assess gender-related differences in the immune microenvironment of rectal cancer patients. METHODS: A systematic review and meta-analysis were conducted up to 31 May 2021, including studies focusing on gender-related differences in the CRC tumor microenvironment. Data on the mutational profile of rectal cancer were extracted from the Cancer Genome Atlas (TCGA). A subanalysis of the two IMMUNOREACT trials (NCT04915326 and NCT04917263) was performed, aiming to detect gender-related differences in the immune microenvironment of the healthy mucosa in patients with early (IMMUNOREACT 1 cohort) and locally advanced rectal cancer following neoadjuvant therapy (IMMUNOREACT 2 cohort). In the retrospective IMMUNOREACT 1 cohort (therapy naive), the authors enrolled 442 patients (177 female and 265 male), while in the retrospective IMMUNOREACT 2 cohort (patients who had neoadjuvant therapy), we enrolled 264 patients (80 female and 184 male). In the prospective IMMUNOREACT 1 cohort (therapy naive), the authors enrolled 72 patients (26 female and 46 male), while in the prospective IMMUNOREACT 2 cohort (patients who had neoadjuvant therapy), the authors enrolled 105 patients (42 female and 63 male). RESULTS: Seven studies reported PD-L1 expression in the CRC microenvironment, but no significant difference could be identified between the sexes. In the TGCA series, mutations of SYNE1 and RYR2 were significantly more frequent in male patients with rectal cancer. In the IMMUNOREACT 1 cohort, male patients had a higher expression of epithelial cells expressing HLA class I, while female patients had a higher number of activated CD4+Th1 cells. Female patients in the IMMUNOREACT 2 cohort showed a higher infiltration of epithelial cells expressing CD86 and activated cytotoxic T cells (P=0.01). CONCLUSIONS: Male patients have more frequent oncogene mutations associated with a lower expression of T-cell activation genes. In the healthy mucosa of female patients, more Th1 cells and cytotoxic T cells suggest a potentially better immune response to the tumor. Sex should be considered when defining the treatment strategy for rectal cancer patients or designing prognostic scores.


Asunto(s)
Neoplasias del Recto , Humanos , Masculino , Femenino , Estudios de Cohortes , Estudios Retrospectivos , Estudios Prospectivos , Neoplasias del Recto/patología , Terapia Neoadyuvante , Microambiente Tumoral/genética
14.
ACS Energy Lett ; 8(3): 1300-1312, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36937789

RESUMEN

Metal-sulfur batteries constitute an extraordinary research playground that ranges from fundamental science to applied technologies. However, besides the widely explored Li-S system, a remarkable lack of understanding hinders advancements and performance in all other metal-sulfur systems. In fact, similarities and differences make all generalizations highly inconsistent, thus unavoidably suggesting the need for extensive research explorations for each formulation. Here we review critically the most remarkable open challenges that still hinder the full development of metal-S battery formulations, starting from the lithium benchmark and addressing Na, K, Mg, and Ca metal systems. Our aim is to draw an updated picture of the recent efforts in the field and to shed light on the most promising innovation paths that can pave the way to breakthroughs in the fundamental comprehension of these systems or in battery performance.

15.
Medicina (Kaunas) ; 59(3)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36984613

RESUMEN

For over four decades, mass spectrometry-based methods have provided a wealth of information relevant to various challenges in the field of cancers research. These challenges included identification and validation of novel biomarkers for various diseases, in particular for various forms of cancer. These biomarkers serve various objectives including monitoring patient response to the various forms of therapy, differentiating subgroups of the same type of cancer, and providing proteomic data to complement datasets generated by genomic, epigenetic, and transcriptomic methods. The same proteomic data can be used to provide prognostic information and could guide scientists and medics to new and innovative targeted therapies The past decade has seen a rapid emergence of epigenetics as a major contributor to carcinogenesis. This development has given a fresh momentum to MS-based proteomics, which demonstrated to be an unrivalled tool for the analyses of protein post-translational modifications associated with chromatin modifications. In particular, high-resolution mass spectrometry has been recently used for systematic quantification of chromatin modifications. Data generated by this approach are central in the search for new therapies for various forms of cancer and will help in attempts to decipher antitumor drug resistance. To appreciate the contribution of mass spectrometry-based proteomics to biomarkers discovery and to our understanding of mechanisms behind the initiation and progression of various forms of cancer, a number of recent investigations are discussed. These investigations also include results provided by two-dimensional gel electrophoresis combined with mass spectrometry.


Asunto(s)
Neoplasias , Proteómica , Niño , Humanos , Proteómica/métodos , Espectrometría de Masas/métodos , Biomarcadores , Cromatina
16.
Int J Cancer ; 153(2): 437-449, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-36815540

RESUMEN

Rectal cancer (RC) accounts for one-third of colorectal cancers (CRC), and 40% of these are locally advanced rectal cancers (LARC). The use of neoadjuvant chemoradiotherapy (nCRT) significantly reduces the rate of local recurrence compared to adjuvant therapy or surgery alone. However, after nCRT, up to 40%-60% of patients show a poor pathological response, while only about 20% achieve a pathological complete response. In this scenario, the identification of novel predictors of tumor response to nCRT is urgently needed to reduce LARC mortality and to spare poorly responding patients from unnecessary treatments. Therefore, by combining gene and microRNA expression datasets with proteomic data from LARC patients, we developed an integrated network centered on seven hub-genes putatively involved in the response to nCRT. In an independent validation cohort of LARC patients, we confirmed that differential expression of NFKB1, TRAF6 and STAT3 is correlated with the response to nCRT. In addition, the functional enrichment analysis also revealed that these genes are strongly related to hallmarks of cancer and inflammation, whose dysfunction may causatively affect LARC patient's response to nCRT. Furthermore, by constructing the transcription factor-module network, we hypothesized a protective role of POU2F3 gene, which could be used as a new drug target in LARC patients. Finally, we identified and tested in vitro entinostat, a histone deacetylase inhibitor, as a chemical compound that could be combined with a classical therapeutic regimen in order to design more efficient therapeutic strategies in LARC management.


Asunto(s)
Antineoplásicos , Neoplasias del Recto , Humanos , Fluorouracilo , Resultado del Tratamiento , Multiómica , Proteómica , Quimioradioterapia , Neoplasias del Recto/tratamiento farmacológico , Neoplasias del Recto/genética , Neoplasias del Recto/patología , Terapia Neoadyuvante , Factores de Transcripción de Octámeros
17.
Transl Res ; 253: 57-67, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36096350

RESUMEN

Pancreatic cancer is likely to become one of the leading causes of cancer-related death in many countries within the next decade. Surgery is the potentially curative treatment for pancreatic ductal adenocarcinoma (PDAC), although only 10%-20% of patients have a resectable disease after diagnosis. Despite recent advances in curative surgery the current prognosis ranges from 6% to 10% globally. One of the main issues at the pre-clinical level is the lacking of model which simultaneously reflects the tumour microenvironment (TME) at both structural and cellular levels. Here we describe an innovative tissue engineering approach applied to PDAC starting from decellularized human biopsies in order to generate an organotypic 3D in vitro model. This in vitro 3D system recapitulates the ultrastructural environment of native tissue as demonstrated by histology, immunohistochemistry, immunofluorescence, mechanical analysis, and scanning electron microscopy. Mass spectrometry confirmed a different extracellular matrix (ECM) composition between decellularized healthy pancreas and PDAC by identifying a total of 110 non-redundant differently expressed proteins. Immunofluorescence analyses after 7 days of scaffold recellularization with PANC-1 and AsPC-1 pancreatic cell lines, were performed to assess the biocompatibility of 3D matrices to sustain engraftment, localization and infiltration. Finally, both PANC-1 and AsPC-1 cells cultured in 3D matrices showed a reduced response to treatment with FOLFIRINOX if compared to conventional bi-dimensional culture. Our 3D culture system with patient-derived tissue-specific decellularized ECM better recapitulates the pancreatic cancer microenvironment compared to conventional 2D culture conditions and represents a relevant approach for the study of pancreatic cancer response to chemotherapy agents.


Asunto(s)
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patología , Protocolos de Quimioterapia Combinada Antineoplásica , Adenocarcinoma/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Matriz Extracelular/metabolismo , Microambiente Tumoral , Neoplasias Pancreáticas
18.
Mass Spectrom Rev ; 42(3): 984-1007, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-34558100

RESUMEN

Amylin (islet amyloid polypeptide [IAPP]) is a neuroendocrine hormone synthesized with insulin in the beta cells of pancreatic islets. The two hormones act in different ways: in fact insulin triggers glucose uptake in muscle and liver cells, removing glucose from the bloodstream and making it available for energy use and storage, while amylin regulates glucose homeostasis. Aside these positive physiological aspects, human amyloid polypeptide (hIAPP) readily forms amyloid in vitro. Amyloids are aggregates of proteins and in the human body amyloids are considered responsible of the development of various diseases. These aspects have been widely described and discussed in literature and to give a view of the highly complexity of this biochemical behavior the different physical, chemical, biological and medical aspects are shortly described in this review. It is strongly affected by the presence on metal ions, responsible for or inhibiting the formation of fibrils. Mass spectrometry resulted (and still results) to be a particularly powerful tool to obtain valid and effective experimental data to describe the hIAPP behavior. Aside classical approaches devoted to investigation on metal ion-hIAPP structures, which reflects on the identification of metal-protein interaction site(s) and of possible metal-induced conformational changes of the protein, interesting results have been obtained by ion mobility mass spectrometry, giving, on the basis of collisional cross-section data, information on both the oligomerization processes and the conformation changes. Laser ablation electrospray ionization-ion mobility spectrometry-mass spectrometry (LAESI-IMS-MS), allowed to obtain information on the binding stoichiometry, complex dissociation constant, and the oxidation state of the copper for the amylin-copper interaction. Alternatively to inorganic ions, small organic molecules have been tested by ESI-IMS-MS as inhibitor of amyloid assembly. Also in this case the obtained data demonstrate the validity of the ESI-IMS-MS approach as a high-throughput screen for inhibitors of amyloid assembly, providing valid information concerning the identity of the interacting species, the nature of binding and the effect of the ligand on protein aggregation. Effects of Cu2+ and Zn2+ ions in the degradation of human and murine IAPP by insulin-degrading enzyme were studied by liquid chromatography/mass spectrometry (LC/MS). The literature data show that mass spectrometry is a highly valid and effective tool in the study of the amylin behavior, so to individuate medical strategies to avoid the undesired formation of amyloids in in vivo conditions.


Asunto(s)
Insulinas , Polipéptido Amiloide de los Islotes Pancreáticos , Ratones , Humanos , Animales , Polipéptido Amiloide de los Islotes Pancreáticos/química , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Cobre/química , Cobre/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Amiloide/química , Amiloide/metabolismo , Glucosa
19.
Genes (Basel) ; 15(1)2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38254934

RESUMEN

BACKGROUND: Adult pancreatoblastoma (PBL) is a rare pancreatic malignancy, with recent evidence suggesting a possible link to familial adenomatous polyposis (FAP). This study aims to review the latest evidence and explore a possible association between adult PBL and FAP. METHODS: Two independent literature reviews were conducted: (1) on PBL and FAP, and (2) on PBL in the adult population not diagnosed with FAP. RESULTS: Out of 26 articles on PBL and FAP screened, 5 were selected for systematic review, including 1 additional case. We identified eight FAP-related PBL cases, with a median age of 40 (IQR: 34-50). Of these, seven (87%) occurred in adults. We found 65 cases of adult PBL not FAP-related; thus, 7 out of 65 cases (10.7%) of adult PBL reported in the literature are associated with a clinical diagnosis of FAP or were carriers of APC germline pathogenic variants (GPVs). CONCLUSION: Data suggest a non-random association between adult PBL and FAP. Further research is essential to optimise surveillance protocols and develop more effective treatment strategies.


Asunto(s)
Poliposis Adenomatosa del Colon , Neoplasias Pancreáticas , Adulto , Humanos , Poliposis Adenomatosa del Colon/genética , Mutación de Línea Germinal , Neoplasias Pancreáticas/epidemiología , Neoplasias Pancreáticas/genética
20.
Cancers (Basel) ; 14(23)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36497384

RESUMEN

Bidirectional communication between cells and their microenvironment has a key function in normal tissue homeostasis, and in disease initiation, progression and a patient's prognosis, at the very least. The extracellular matrix (ECM), as an element of all tissues and cellular microenvironment, is a frequently overlooked component implicated in the pathogenesis and progression of several diseases. In the inflammatory microenvironment (IME), different alterations resulting from remodeling processes can affect ECM, progressively inducing cancer initiation and the passage toward a tumor microenvironment (TME). Indeed, it has been demonstrated that altered ECM components interact with a variety of surface receptors triggering intracellular signaling that affect cellular pathways in turn. This review aims to support the notion that the ECM and its alterations actively participate in the promotion of chronic inflammation and cancer initiation. In conclusion, some data obtained in cancer research with the employment of decellularized ECM (dECM) models are described. The reported results encourage the application of dECM models to investigate the short circuits contributing to the creation of distinct IME, thus representing a potential tool to avoid the progression toward a malignant lesion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...