Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
New Phytol ; 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38229566

RESUMEN

The chemical arms race between plants and insects is foundational to the generation and maintenance of biological diversity. We asked how the evolution of a novel defensive compound in an already well-defended plant lineage impacts interactions with diverse herbivores. Erysimum cheiranthoides (Brassicaceae), which produces both ancestral glucosinolates and novel cardiac glycosides, served as a model. We analyzed gene expression to identify cardiac glycoside biosynthetic enzymes in E. cheiranthoides and characterized these enzymes via heterologous expression and CRISPR/Cas9 knockout. Using E. cheiranthoides cardiac glycoside-deficient lines, we conducted insect experiments in both the laboratory and field. EcCYP87A126 initiates cardiac glycoside biosynthesis via sterol side-chain cleavage, and EcCYP716A418 has a role in cardiac glycoside hydroxylation. In EcCYP87A126 knockout lines, cardiac glycoside production was eliminated. Laboratory experiments with these lines revealed that cardiac glycosides were highly effective defenses against two species of glucosinolate-tolerant specialist herbivores, but did not protect against all crucifer-feeding specialist herbivores in the field. Cardiac glycosides had lesser to no effect on two broad generalist herbivores. These results begin elucidation of the E. cheiranthoides cardiac glycoside biosynthetic pathway and demonstrate in vivo that cardiac glycoside production allows Erysimum to escape from some, but not all, specialist herbivores.

2.
Ecol Lett ; 27(1): e14340, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38017619

RESUMEN

Herbivores that sequester toxins are thought to have cracked the code of plant defences. Nonetheless, coevolutionary theory predicts that plants should evolve toxic variants that also negatively impact specialists. We propose and test the selective sequestration hypothesis, that specialists preferentially sequester compounds that are less toxic to themselves while maintaining toxicity to enemies. Using chemically distinct plants, we show that monarch butterflies sequester only a subset of cardenolides from milkweed leaves that are less potent against their target enzyme (Na+ /K+ -ATPase) compared to several dominant cardenolides from leaves. However, sequestered compounds remain highly potent against sensitive Na+ /K+ -ATPases found in most predators. We confirmed this differential toxicity with mixtures of purified cardenolides from leaves and butterflies. The genetic basis of monarch adaptation to sequestered cardenolides was also confirmed with transgenic Drosophila that were CRISPR-edited with the monarch's Na+ /K+ -ATPase. Thus, the monarch's selective sequestration appears to reduce self-harm while maintaining protection from enemies.


Asunto(s)
Asclepias , Mariposas Diurnas , Animales , Mariposas Diurnas/genética , Larva , Asclepias/química , Cardenólidos/toxicidad , Adenosina Trifosfatasas
3.
J Chem Ecol ; 50(1-2): 52-62, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37932621

RESUMEN

Plants have evolved a diverse arsenal of defensive secondary metabolites in their evolutionary arms race with insect herbivores. In addition to the bottom-up forces created by plant chemicals, herbivores face top-down pressure from natural enemies, such as predators, parasitoids and parasites. This has led to the evolution of specialist herbivores that do not only tolerate plant secondary metabolites but even use them to fight natural enemies. Monarch butterflies (Danaus plexippus) are known for their use of milkweed chemicals (cardenolides) as protection against vertebrate predators. Recent studies have shown that milkweeds with high cardenolide concentrations can also provide protection against a virulent protozoan parasite. However, whether cardenolides are directly responsible for these effects, and whether individual cardenolides or mixtures of these chemicals are needed to reduce infection, remains unknown. We fed monarch larvae the four most abundant cardenolides found in the anti-parasitic-milkweed Asclepias curassavica at varying concentrations and compositions to determine which provided the highest resistance to parasite infection. Measuring infection rates and infection intensities, we found that resistance is dependent on both concentration and composition of cardenolides, with mixtures of cardenolides performing significantly better than individual compounds, even when mixtures included lower concentrations of individual compounds. These results suggest that cardenolides function synergistically to provide resistance against parasite infection and help explain why only milkweed species that produce diverse cardenolide compounds provide measurable parasite resistance. More broadly, our results suggest that herbivores can benefit from consuming plants with diverse defensive chemical compounds through release from parasitism.


Asunto(s)
Asclepias , Mariposas Diurnas , Parásitos , Enfermedades Parasitarias , Animales , Mariposas Diurnas/metabolismo , Asclepias/química , Cardenólidos/farmacología , Cardenólidos/metabolismo , Larva/metabolismo
4.
Sci Rep ; 13(1): 20437, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37993590

RESUMEN

Urbanization is altering landscapes globally at an unprecedented rate. While ecological differences between urban and rural environments often promote phenotypic divergence among populations, it is unclear to what degree these trait differences arise from genetic divergence as opposed to phenotypic plasticity. Furthermore, little is known about how specific landscape elements, such as green corridors, impact genetic divergence in urban environments. We tested the hypotheses that: (1) urbanization, and (2) proximity to an urban green corridor influence genetic divergence in common milkweed (Asclepias syriaca) populations for phenotypic traits. Using seeds from 52 populations along three urban-to-rural subtransects in the Greater Toronto Area, Canada, one of which followed a green corridor, we grew ~ 1000 plants in a common garden setup and measured > 20 ecologically-important traits associated with plant defense/damage, reproduction, and growth over four years. We found significant heritable variation for nine traits within common milkweed populations and weak phenotypic divergence among populations. However, neither urbanization nor an urban green corridor influenced genetic divergence in individual traits or multivariate phenotype. These findings contrast with the expanding literature demonstrating that urbanization promotes rapid evolutionary change and offer preliminary insights into the eco-evolutionary role of green corridors in urban environments.


Asunto(s)
Asclepias , Urbanización , Asclepias/genética , Flujo Genético , Evolución Biológica , Adaptación Fisiológica
5.
bioRxiv ; 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37790475

RESUMEN

The chemical arms race between plants and insects is foundational to the generation and maintenance of biological diversity. We asked how the evolution of a novel defensive compound in an already well-defended plant lineage impacts interactions with diverse herbivores. Erysimum cheiranthoides (Brassicaceae), which produces both ancestral glucosinolates and novel cardiac glycosides, served as a model.We analyzed gene expression to identify cardiac glycoside biosynthetic enzymes in E. cheiranthoides and characterized these enzymes via heterologous expression and CRISPR/Cas9 knockout. Using E. cheiranthoides cardiac glycoside-deficient lines, we conducted insect experiments in both the laboratory and field.EcCYP87A126 initiates cardiac glycoside biosynthesis via sterol side chain cleavage, and EcCYP716A418 has a role in cardiac glycoside hydroxylation. In EcCYP87A126 knockout lines, cardiac glycoside production was eliminated. Laboratory experiments with these lines revealed that cardiac glycosides were highly effective defenses against two species of glucosinolate-tolerant specialist herbivores but did not protect against all crucifer-feeding specialist herbivores in the field. Cardiac glycosides had lesser to no effect on two broad generalist herbivores.These results begin elucidation of the E. cheiranthoides cardiac glycoside biosynthetic pathway and demonstrate in vivo that cardiac glycoside production allows Erysimum to escape from some, but not all, specialist herbivores.

6.
Evolution ; 77(11): 2431-2441, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37656826

RESUMEN

A major predicted constraint on the evolution of anti-herbivore defense in plants is the nonindependent expression of traits mediating resistance. Since herbivore attack can be highly variable across plant tissues, we hypothesized that correlations in toxin expression within and between plant tissues may limit population differentiation and, thus, plant adaptation. Using full-sib families from two nearby (<1 km) common milkweed (Asclepias syriaca) populations, we investigated genetic correlations among 28 distinct cardenolide toxins within and between roots, leaves, and seeds and examined signatures of tissue-specific divergent selection between populations by QST-FST comparisons. The prevalence, direction, and strength of genetic correlations among cardenolides were tissue specific, and concentrations of individual cardenolides were moderately correlated between tissues; nonetheless, the direction and strength of correlations were population specific. Population divergence in the cardenolide chemistry was stronger in roots than in leaves and seeds. Divergent selection on individual cardenolides was tissue and toxin specific, except for a single highly toxic cardenolide (labriformin), that showed divergent selection across all plant tissues. Heterogeneous evolution of cardenolides within and between tissues across populations appears possible due to their highly independent expression. This independence may be common in nature, especially in specialized interactions in which distinct herbivores feed on different plant tissues.


Asunto(s)
Asclepias , Mariposas Diurnas , Humanos , Animales , Mariposas Diurnas/metabolismo , Herbivoria , Plantas , Cardenólidos/metabolismo , Cardenólidos/toxicidad , Asclepias/metabolismo
7.
Proc Biol Sci ; 290(2004): 20230987, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37554038

RESUMEN

Plant toxicity shapes the dietary choices of herbivores. Especially when herbivores sequester plant toxins, they may experience a trade-off between gaining protection from natural enemies and avoiding toxicity. The availability of toxins for sequestration may additionally trade off with the nutritional quality of a potential food source for sequestering herbivores. We hypothesized that diet mixing might allow a sequestering herbivore to balance nutrition and defence (via sequestration of plant toxins). Accordingly, here we address diet mixing and sequestration of large milkweed bugs (Oncopeltus fasciatus) when they have differential access to toxins (cardenolides) in their diet. In the absence of toxins from a preferred food (milkweed seeds), large milkweed bugs fed on nutritionally adequate non-toxic seeds, but supplemented their diet by feeding on nutritionally poor, but cardenolide-rich milkweed leaf and stem tissues. This dietary shift corresponded to reduced insect growth but facilitated sequestration of defensive toxins. Plant production of cardenolides was also substantially induced by bug feeding on leaf and stem tissues, perhaps benefitting this cardenolide-resistant herbivore. Thus, sequestration appears to drive diet mixing in this toxic plant generalist, even at the cost of feeding on nutritionally poor plant tissue.


Asunto(s)
Asclepias , Plantas Tóxicas , Herbivoria , Dieta , Cardenólidos
8.
Curr Biol ; 33(17): 3702-3710.e5, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37607548

RESUMEN

In intimate ecological interactions, the interdependency of species may result in correlated demographic histories. For species of conservation concern, understanding the long-term dynamics of such interactions may shed light on the drivers of population decline. Here, we address the demographic history of the monarch butterfly, Danaus plexippus, and its dominant host plant, the common milkweed Asclepias syriaca (A. syriaca), using broad-scale sampling and genomic inference. Because genetic resources for milkweed have lagged behind those for monarchs, we first release a chromosome-level genome assembly and annotation for common milkweed. Next, we show that despite its enormous geographic range across eastern North America, A. syriaca is best characterized as a single, roughly panmictic population. Using approximate Bayesian computation with random forests (ABC-RF), a machine learning method for reconstructing demographic histories, we show that both monarchs and milkweed experienced population expansion during the most recent recession of North American glaciers 10,000-20,000 years ago. Our data also identify concurrent population expansions in both species during the large-scale clearing of eastern forests (∼200 years ago). Finally, we find no evidence that either species experienced a reduction in effective population size over the past 75 years. Thus, the well-documented decline of monarch abundance over the past 40 years is not visible in our genomic dataset, reflecting a possible mismatch of the overwintering census population to effective population size in this species.


Asunto(s)
Asclepias , Mariposas Diurnas , Animales , Asclepias/genética , Mariposas Diurnas/genética , Teorema de Bayes , Densidad de Población , Genómica
9.
Proc Natl Acad Sci U S A ; 120(22): e2302251120, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37216531

RESUMEN

In coevolution between plants and insects, reciprocal selection often leads to phenotype matching between chemical defense and herbivore offense. Nonetheless, it is not well understood whether distinct plant parts are differentially defended and how herbivores adapted to those parts cope with tissue-specific defense. Milkweed plants produce a diversity of cardenolide toxins and specialist herbivores have substitutions in their target enzyme (Na+/K+-ATPase), each playing a central role in milkweed-insect coevolution. The four-eyed milkweed beetle (Tetraopes tetrophthalmus) is an abundant toxin-sequestering herbivore that feeds exclusively on milkweed roots as larvae and less so on milkweed leaves as adults. Accordingly, we tested the tolerance of this beetle's Na+/K+-ATPase to cardenolide extracts from roots versus leaves of its main host (Asclepias syriaca), along with sequestered cardenolides from beetle tissues. We additionally purified and tested the inhibitory activity of dominant cardenolides from roots (syrioside) and leaves (glycosylated aspecioside). Tetraopes' enzyme was threefold more tolerant of root extracts and syrioside than leaf cardenolides. Nonetheless, beetle-sequestered cardenolides were more potent than those in roots, suggesting selective uptake or dependence on compartmentalization of toxins away from the beetle's enzymatic target. Because Tetraopes has two functionally validated amino acid substitutions in its Na+/K+-ATPase compared to the ancestral form in other insects, we compared its cardenolide tolerance to that of wild-type Drosophila and CRISPR-edited Drosophila with Tetraopes' Na+/K+-ATPase genotype. Those two amino acid substitutions accounted for >50% of Tetraopes' enhanced enzymatic tolerance of cardenolides. Thus, milkweed's tissue-specific expression of root toxins is matched by physiological adaptations in its specialist root herbivore.


Asunto(s)
Alcaloides , Asclepias , Escarabajos , Animales , Herbivoria , Adaptación Fisiológica , Escarabajos/fisiología , Cardenólidos/química , Asclepias/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Drosophila/metabolismo
10.
Ecology ; 104(4): e3988, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36756764

RESUMEN

Extreme heat events are becoming more frequent and intense as climate variability increases, and these events inherently vary in their timing. We predicted that the timing of a heat wave would determine its consequences for insect communities owing to temporal variation in the susceptibility of host plants to heat stress. We subjected common milkweed (Asclepias syriaca) plants to in-field experimental heat waves to investigate how the timing of heat waves, both seasonally and relative to a biotic stressor (experimental herbivory), affected their ecological consequences. We found that heat waves had multiyear, timing-specific effects on plant-insect communities. Early-season heat waves led to greater and more persistent effects on plants and herbivore communities than late-season heat waves. Heat waves following experimental herbivory had reduced consequences. Our results show that extreme climate events can have complex, lasting ecological effects beyond the year of the event-and that timing is key to understanding those effects.


Asunto(s)
Asclepias , Animales , Insectos , Herbivoria , Plantas
11.
J Chem Ecol ; 49(7-8): 418-427, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36745328

RESUMEN

Plant secondary metabolites that defend leaves from herbivores also occur in floral nectar. While specialist herbivores often have adaptations providing resistance to these compounds in leaves, many social insect pollinators are generalists, and therefore are not expected to be as resistant to such compounds. The milkweeds, Asclepias spp., contain toxic cardenolides in all tissues including floral nectar. We compared the concentrations and identities of cardenolides between tissues of the North American common milkweed Asclepias syriaca, and then studied the effect of the predominant cardenolide in nectar, glycosylated aspecioside, on an abundant pollinator. We show that a generalist bumblebee, Bombus impatiens, a common pollinator in eastern North America, consumes less nectar with experimental addition of ouabain (a standard cardenolide derived from Apocynacid plants native to east Africa) but not with addition of glycosylated aspecioside from milkweeds. At a concentration matching that of the maximum in the natural range, both cardenolides reduced activity levels of bees after four days of consumption, demonstrating toxicity despite variation in behavioral deterrence (i.e., consumption). In vitro enzymatic assays of Na+/K+-ATPase, the target site of cardenolides, showed lower toxicity of the milkweed cardenolide than ouabain for B. impatiens, indicating that the lower deterrence may be due to greater tolerance to glycosylated aspecioside. In contrast, there was no difference between the two cardenolides in toxicity to the Na+/K+-ATPase from a control insect, the fruit fly Drosophila melanogaster. Accordingly, this work reveals that even generalist pollinators such as B. impatiens may have adaptations to reduce the toxicity of specific plant secondary metabolites that occur in nectar, despite visiting flowers from a wide variety of plants over the colony's lifespan.


Asunto(s)
Asclepias , Mariposas Diurnas , Abejas , Animales , Asclepias/metabolismo , Cardenólidos/toxicidad , Cardenólidos/metabolismo , Mariposas Diurnas/metabolismo , Néctar de las Plantas , Ouabaína/metabolismo , Drosophila melanogaster , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
12.
Ecology ; 104(4): e3986, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36752288

RESUMEN

Despite long-standing theory for classifying plant ecological strategies, limited data directly link organismal traits to whole-plant growth rates (GRs). We compared trait-growth relationships based on three prominent theories: growth analysis, Grime's competitive-stress tolerant-ruderal (CSR) triangle, and the leaf economics spectrum (LES). Under these schemes, growth is hypothesized to be predicted by traits related to relative biomass investment, leaf structure, or gas exchange, respectively. We also considered traits not included in these theories but that might provide potential alternative best predictors of growth. In phylogenetic analyses of 30 diverse milkweeds (Asclepias spp.) and 21 morphological and physiological traits, GR (total biomass produced per day) varied 50-fold and was best predicted by biomass allocation to leaves (as predicted by growth analysis) and the CSR traits of leaf size and leaf dry matter content. Total leaf area (LA) and plant height were also excellent predictors of whole-plant GRs. Despite two LES traits correlating with growth (mass-based leaf nitrogen and area-based leaf phosphorus contents), these were in the opposite direction of that predicted by LES, such that higher N and P contents corresponded to slower growth. The remaining LES traits (e.g., leaf gas exchange) were not predictive of plant GRs. Overall, differences in GR were driven more by whole-plant characteristics such as biomass fractions and total LA than individual leaf-level traits such as photosynthetic rate or specific leaf area. Our results are most consistent with classical growth analysis-combining leaf traits with whole-plant allocation to best predict growth. However, given that destructive biomass measures are often not feasible, applying easy-to-measure leaf traits associated with the CSR classification appear more predictive of whole-plant growth than LES traits. Testing the generality of this result across additional taxa would further improve our ability to predict whole-plant growth from functional traits across scales.


Asunto(s)
Fotosíntesis , Plantas , Filogenia , Plantas/anatomía & histología , Fotosíntesis/fisiología , Biomasa , Desarrollo de la Planta , Hojas de la Planta
13.
Methods Enzymol ; 680: 275-302, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36710014

RESUMEN

The biosynthesis of cardiac glycosides, broadly classified as cardenolides and bufadienolides, has evolved repeatedly among flowering plants. Individual species can produce dozens or even hundreds of structurally distinct cardiac glycosides. Although all cardiac glycosides exhibit biological activity by inhibiting the function of the essential Na+/K+-ATPase in animal cells, they differ in their level of inhibitory activity. For within- and between-species comparisons of cardiac glycosides to address ecological and evolutionary questions, it is necessary to not only quantify their relative abundance, but also their effectiveness in inhibiting the activity of different animal Na+/K+-ATPases. Here we describe protocols for characterizing the amount and toxicity of cardenolides from plant samples and the degree of insect Na+/K+-ATPase tolerance to inhibition: (1) an HPLC-based assay to quantify the abundance of individual cardenolides in plant extracts, (2) an assay to quantify inhibition of Na+/K+-ATPase activity by plant extracts, and (3) extraction of insect Na+/K+-ATPases for inhibition assays.


Asunto(s)
Cardenólidos , Glicósidos Cardíacos , Animales , Cardenólidos/farmacología , Cromatografía Líquida de Alta Presión , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Glicósidos Cardíacos/farmacología , Extractos Vegetales/farmacología
14.
Ecology ; 104(2): e3915, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36336890

RESUMEN

As a general rule, plants defend against herbivores with multiple traits. The defense synergy hypothesis posits that some traits are more effective when co-expressed with others compared to their independent efficacy. However, this hypothesis has rarely been tested outside of phytochemical mixtures, and seldom under field conditions. We tested for synergies between multiple defense traits of common milkweed (Asclepias syriaca) by assaying the performance of two specialist chewing herbivores on plants in natural populations. We employed regression and a novel application of random forests to identify synergies and antagonisms between defense traits. We found the first direct empirical evidence for two previously hypothesized defense synergies in milkweed (latex by secondary metabolites, latex by trichomes) and identified numerous other potential synergies and antagonisms. Our strongest evidence for a defense synergy was between leaf mass per area and low nitrogen content; given that these "leaf economic" traits typically covary in milkweed, a defense synergy could reinforce their co-expression. We report that each of the plant defense traits showed context-dependent effects on herbivores, and increased trait expression could well be beneficial to herbivores for some ranges of observed expression. The novel methods and findings presented here complement more mechanistic approaches to the study of plant defense diversity and provide some of the best evidence to date that multiple classes of plant defense synergize in their impact on insects. Plant defense synergies against highly specialized herbivores, as shown here, are consistent with ongoing reciprocal evolution between these antagonists.


Asunto(s)
Asclepias , Mariposas Diurnas , Animales , Herbivoria , Larva , Asclepias/química , Asclepias/metabolismo , Látex/análisis , Látex/química , Látex/metabolismo , Plantas/metabolismo , Hojas de la Planta/química
15.
Ecology ; 103(11): e3786, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35711089

RESUMEN

Spatiotemporal variation in herbivory is a major driver of intraspecific variation in plant defense. Comparatively little is known, however, about how changes in herbivory regime affect the balance of constitutive and induced resistance, which are often considered alternative defensive strategies. Here, we investigated how nearly a decade of insect herbivore suppression affected constitutive and induced resistance in horsenettle (Solanum carolinense), a widespread herbaceous perennial. We allowed replicated horsenettle populations to respond to the presence or absence of herbivores by applying insecticide to all plants in half of 16 field plots. Horsenettle density rapidly increased in response to insecticide treatment, and this effect persisted for at least 4 years after the cessation of herbivore suppression. We subsequently grew half-sibling families from seeds collected during and shortly after insecticide treatment in a common garden and found strong effects of insect suppression on induced resistance. Feeding trials in field mesocosms with false Colorado potato beetles (Leptinotarsa juncta), a common specialist herbivore, revealed that multiyear herbivore suppression drove rapid attenuation of induced resistance: offspring of plants from insect-suppression plots exhibited a near-complete loss of induced resistance to beetles, whereas those from control plots incurred ~70% less damage after experimental induction. Plants from insect-suppression plots also had ~40% greater constitutive resistance compared with those from control plots, although this difference was not statistically significant. We nonetheless detected a strong trade-off between constitutive and induced resistance across families. In contrast, the constitutive expression of trypsin inhibitors (TI), an important chemical defense trait in horsenettle, was reduced by 20% in the offspring of plants from insect-suppression plots relative to those from control plots. However, TIs were induced to an equal extent whether or not insect herbivores had been historically suppressed. Although several defense and performance traits (prickle density, TI concentration, resistance against false Colorado potato beetles and flea beetles, biomass, and seed mass) varied markedly across families, no traits exhibited significant pairwise correlations. Overall, our results indicate that, whereas the divergent responses of multiple defense traits to insect suppression led to comparatively small changes in overall constitutive resistance, they significantly reduced induced resistance against false Colorado potato beetle.


Asunto(s)
Escarabajos , Insecticidas , Solanum , Animales , Solanum/fisiología , Insectos/fisiología , Herbivoria/fisiología
16.
Proc Natl Acad Sci U S A ; 119(25): e2205073119, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35696564

RESUMEN

Environmental clines in organismal defensive traits are usually attributed to stronger selection by enemies at lower latitudes or near the host's range center. Nonetheless, little functional evidence has supported this hypothesis, especially for coevolving plants and herbivores. We quantified cardenolide toxins in seeds of 24 populations of common milkweed (Asclepias syriaca) across 13 degrees of latitude, revealing a pattern of increasing cardenolide concentrations toward the host's range center. The unusual nitrogen-containing cardenolide labriformin was an exception and peaked at higher latitudes. Milkweed seeds are eaten by specialist lygaeid bugs that are even more tolerant of cardenolides than the monarch butterfly, concentrating most cardenolides (but not labriformin) from seeds into their bodies. Accordingly, whether cardenolides defend seeds against these specialist bugs is unclear. We demonstrate that Oncopeltus fasciatus (Lygaeidae) metabolized two major compounds (glycosylated aspecioside and labriformin) into distinct products that were sequestered without impairing growth. We next tested several isolated cardenolides in vitro on the physiological target of cardenolides (Na+/K+-ATPase); there was little variation among compounds in inhibition of an unadapted Na+/K+-ATPase, but tremendous variation in impacts on that of monarchs and Oncopeltus. Labriformin was the most inhibitive compound tested for both insects, but Oncopeltus had the greater advantage over monarchs in tolerating labriformin compared to other compounds. Three metabolized (and stored) cardenolides were less toxic than their parent compounds found in seeds. Our results suggest that a potent plant defense is evolving by natural selection along a geographical cline and targets specialist herbivores, but is met by insect tolerance, detoxification, and sequestration.


Asunto(s)
Asclepias , Mariposas Diurnas , Cardenólidos , Heterópteros , Defensa de la Planta contra la Herbivoria , Adenosina Trifosfatasas/metabolismo , Animales , Asclepias/metabolismo , Mariposas Diurnas/metabolismo , Cardenólidos/química , Cardenólidos/metabolismo , Cardenólidos/toxicidad , Herbivoria , Heterópteros/metabolismo , Semillas/metabolismo
17.
Am J Bot ; 108(9): 1705-1715, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34585372

RESUMEN

PREMISE: Mismatches between light conditions and light-capture strategy can reduce plant performance and prevent colonization of novel habitats. Although light-capture strategies tend to be highly conserved among closely related species, evolutionary transitions from shaded to unshaded habitats (and vice versa) occur in numerous plant lineages. METHODS: We combined phylogenetic approaches with field and greenhouse experiments to investigate evolutionary constraints on light-capture strategy in North American milkweeds (genus Asclepias) and to determine whether colonization of shaded habitats in this heliophilic clade is associated with reduced plasticity and attenuation of the shade avoidance response. RESULTS: Colonization of shaded habitats has occurred at least 10 times in this genus, including at least once in each major North American clade. Evolutionary transitions between habitats exhibit strong directional bias, with shifts from full-sun to shaded habitats occurring at least three times as often as the opposite transition. In field and greenhouse experiments, sun species responded to shade by increasing internode length, height, and specific leaf area, consistent with the shade avoidance response; paired shade species exhibited reduced plasticity overall, and only one trait (specific leaf area) responded to experimental shade. CONCLUSIONS: Our results suggest that milkweeds colonized shaded environments multiple times using a light-capture strategy distinct from the ancestral (putatively shade avoidant) strategy, including a general attenuation of plasticity in response to variable light conditions. This pattern bolsters the notion that shade avoidance and tolerance represent divergent evolutionary strategies for maximizing performance under qualitatively different types of shade.


Asunto(s)
Asclepias , Adaptación Fisiológica , Luz , América del Norte , Filogenia , Hojas de la Planta
18.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34400497

RESUMEN

Dormancy has repeatedly evolved in plants, animals, and microbes and is hypothesized to facilitate persistence in the face of environmental change. Yet previous experiments have not tracked demography and trait evolution spanning a full successional cycle to ask whether early bouts of natural selection are later reinforced or erased during periods of population dormancy. In addition, it is unclear how well short-term measures of fitness predict long-term genotypic success for species with dormancy. Here, we address these issues using experimental field populations of the plant Oenothera biennis, which evolved over five generations in plots exposed to or protected from insect herbivory. While populations existed above ground, there was rapid evolution of defensive and life-history traits, but populations lost genetic diversity and crashed as succession proceeded. After >5 y of seed dormancy, we triggered germination from the seedbank and genotyped >3,000 colonizers. Resurrected populations showed restored genetic diversity that reduced earlier responses to selection and pushed population phenotypes toward the starting conditions of a decade earlier. Nonetheless, four defense and life-history traits remained differentiated in populations with insect suppression compared with controls. These findings capture key missing elements of evolution during ecological cycles and demonstrate the impact of dormancy on future evolutionary responses to environmental change.


Asunto(s)
Evolución Biológica , Oenothera biennis/genética , Oenothera biennis/fisiología , Latencia en las Plantas/fisiología , Semillas/fisiología , Cambio Climático , Factores de Tiempo
19.
Evolution ; 75(7): 1594-1606, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34166533

RESUMEN

The study of reciprocal adaptation in interacting species has been an active and inspiring area of evolutionary research for nearly 60 years. Perhaps owing to its great natural history and potential consequences spanning population divergence to species diversification, coevolution continues to capture the imagination of biologists. Here we trace developments following Ehrlich and Raven's classic paper, with a particular focus on the modern influence of two studies by Dr. May Berenbaum in the 1980s. This series of classic work presented a compelling example exhibiting the macroevolutionary patterns predicted by Ehrlich and Raven and also formalized a microevolutionary approach to measuring selection, functional traits, and understanding reciprocal adaptation between plants and their herbivores. Following this breakthrough was a wave of research focusing on diversifying macroevolutionary patterns, mechanistic chemical ecology, and natural selection on populations within and across community types. Accordingly, we breakdown coevolutionary theory into specific hypotheses at different scales: reciprocal adaptation between populations within a community, differential coevolution among communities, lineage divergence, and phylogenetic patterns. We highlight progress as well as persistent gaps, especially the link between reciprocal adaptation and diversification.


Asunto(s)
Evolución Biológica , Selección Genética , Herbivoria , Filogenia , Plantas
20.
Trends Plant Sci ; 26(8): 796-809, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33865704

RESUMEN

Despite long-standing interest in local adaptation of plants to their biotic and abiotic environment, existing theory, and many case studies, little work to date has addressed within-species evolution of concerted strategies and how these might contrast with patterns across species. Here we consider the interactions between pollinators, herbivores, and resource availability in shaping plant local adaptation, how these interactions impact plant phenotypes and gene flow, and the conditions where multiple traits align along major environmental gradients such as latitude and elevation. Continued work in emerging model systems will benefit from the melding of classic experimental approaches with novel population genetic analyses to reveal patterns and processes in plant local adaptation.


Asunto(s)
Flujo Génico , Herbivoria , Aclimatación , Adaptación Fisiológica/genética , Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...