Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale Adv ; 4(4): 1088-1097, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35308600

RESUMEN

We present a soft-stamping method to selectively print a homogenous layer of CdSeTe/ZnS core-shell quantum dots (QDs) on top of an array of Si nanocylinders with Mie-type resonant modes. Using this new method, we gain accurate control of the quantum dot's angular emission through engineered coupling of the QDs to these resonant modes. Using numerical simulations we show that the emission into or away from the Si substrate can be precisely controlled by the QD position on the nanocylinder. QDs centered on a 400 nm diameter nanocylinder surface show 98% emission directionality into the Si substrate. Alternatively, for homogenous ensembles placed over the nanocylinder top-surface, the upward emission is enhanced 10-fold for 150 nm diameter cylinders. Experimental PL intensity measurements corroborate the simulated trends with cylinder diameter. PL lifetime measurements reflect well the variations of the local density of states at the QD position due to coupling to the resonant cylinders. These results demonstrate that the soft imprint technique provides a unique manner to directly integrate optical emitters with a wide range of nanophotonic geometries, with potential applications in LEDs, luminescent solar concentrators, and up- and down-conversion schemes for improved photovoltaics.

2.
Neurol India ; 69(Supplement): S395-S405, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35102995

RESUMEN

Hydrocephalus is a common clinical problem encountered in neurosurgical practice. With greater subspecialisation, pediatric neurosurgery has emerged as a special discipline in several countries. However, in the developing world, which inhabits a large pediatric population, a limited number of neurosurgeons manage all types of hydrocephalus across all ages. There are some essential differences in pediatric and adult hydrocephalus. The spectrum of hydrocephalus of dysgenetic origin in a neonate and that of normal pressure hydrocephalus of the old age has a completely different strategy of management. Endoscopic third ventriculostomy outcomes are known to be closely associated with age at presentation and surgery. Efficacy of alternative pathways of CSF absorption also differs according to age. Managing this disease in various age groups is challenging because of these differences in etiopathology, tempo of the disease, modalities of investigations and various treatment protocols as well as prognosis.


Asunto(s)
Hidrocéfalo Normotenso , Neurocirugia , Adulto , Niño , Humanos , Recién Nacido , Procedimientos Neuroquirúrgicos , Pronóstico , Ventriculostomía
3.
ACS Nano ; 14(9): 11009-11016, 2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32806024

RESUMEN

In recent years, imprint lithography has emerged as a promising patterning technique capable of high-speed and volume production. In this work, we report highly reproducible one-step printing of metal nanocubes. A dried film of monocrystalline silver cubes serves as the resist, and a soft polydimethylsiloxane stamp directly imprints the final pattern. The use of atomically smooth and sharp faceted nanocubes facilitates the printing of high-resolution and well-defined patterns with face-to-face alignment between adjacent cubes. It also permits digital control over the line width of patterns such as straight lines, curves, and complex junctions over an area of several square millimeters. Single-particle lattices as well as three-dimensional nanopatterns are also demonstrated with an aspect ratio up to 5 in the vertical direction. The high-fidelity nanocube patterning combined with the previously demonstrated epitaxial overgrowth can enable curved (single) crystals from solution at room temperature or highly efficient transparent conductors.

4.
ACS Appl Mater Interfaces ; 12(32): 35986-35994, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32672034

RESUMEN

Hot electrons generated in metal nanoparticles can drive chemical reactions and selectively deposit cocatalyst materials on the plasmonic hotspots, the areas where the decay of plasmons takes place and the hot electrons are created. While hot electrons have been extensively used for nanomaterial formation, the utilization of hot holes for simultaneous cocatalyst deposition has not yet been explored. Herein, we demonstrate that hot holes can drive an oxidation reaction for the deposition of the manganese oxide (MnOx) cocatalyst on different plasmonic gold (Au) nanostructures on a thin titanium dioxide (TiO2) layer, excited at their surface plasmon resonance. An 80% correlation between the hot-hole deposition sites and the simulated plasmonic hotspot location is showed when considering the typical hot-hole diffusion length. Simultaneous deposition of more than one cocatalyst is also achieved on one of the investigated plasmonic systems (Au plasmonic nanoislands) through the hot-hole oxidation of a manganese salt and the hot-electron reduction of a platinum precursor in the same solution. These results add more flexibility to the use of hot carriers and open up the way for the design of complex photocatalytic nanostructures.

5.
ACS Photonics ; 7(6): 1476-1482, 2020 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-32566698

RESUMEN

High-energy (1-100 keV) electrons can coherently couple to plasmonic and dielectric nanostructures, creating cathodoluminescence (CL) of which the spectral features reveal details of the material's resonant modes at a deep-subwavelength spatial resolution. While CL provides fundamental insight in optical modes, detecting its phase has remained elusive. Here, we use Fourier-transform CL holography to determine the far-field phase distribution of fields scattered from plasmonic nanoholes, nanocubes, and helical nanoapertures and reconstruct the angle-resolved phase distributions. From the derived fields, we derive the relative strength and phase of induced scattering dipoles. Fourier-transform CL holography opens up a new world of coherent light scattering and surface wave studies with nanoscale spatial resolution.

6.
ACS Appl Mater Interfaces ; 12(28): 31764-31769, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32545949

RESUMEN

The use of colloidal self-assembly to form the complex multiscale patterns in many optoelectronic devices has been a long-standing dream of the nanoscience community. While great progress has been made using charged colloids in polar solvents, controlled assembly from nonpolar solvents is much more challenging. The major challenge is colloidal clustering caused by strong van der Waals (vdW) attraction between long-chain surface capping ligands passivating the surface of nanocrystals. Such clustering degrades ordering in packing during the self-assembly process. While ligand exchange to provide colloidal stability in polar phases is often an option, this is not the case for the exciting new class of halide perovskites due to the material's solubility in essentially all polar solvents. Here, we report surface-functionalized self-assembly of luminescent CsPbBr3 perovskite nanocubes by partially replacing long-chain oleyl groups (18 carbon chain) with short-chain thiocyanate (SCN-). This enables the fabrication of ultrasmooth monolayer thin films of nanocubes with a root-mean-square (RMS) roughness of around 4 Å. This ultrasmooth large area self-assembled layer could act as high-efficiency optoelectronic devices like solar cells, light-emitting diodes (LEDs), transistors, etc. We correlate our experimental results with simulations, providing detailed predictions for lattice constants with chain conformations showing reduced free energy for cubes grafted with short-chain thiocyanate compared to long-chain oleyl groups, thus facilitating better self-assembly.

7.
ACS Appl Mater Interfaces ; 12(7): 8788-8794, 2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-31973525

RESUMEN

Nanoparticle self-assembly and epitaxy are utilized extensively to make 1D and 2D structures with complex shapes. High-resolution transmission electron microscopy (HRTEM) has shown that single-crystalline interfaces can form, but little is known about the strain and dislocations at these interfaces. Such information is critically important for applications: drastically reducing dislocation density was the key breakthrough enabling widespread implementation of light-emitting diodes, while strain engineering has been fundamental to modern high-performance transistors, solar cells, and thermoelectrics. In this work, the interfacial defect and strain formation after self-assembly and room temperature epitaxy of 7 nm Pd nanocubes capped with polyvinylpyrrolidone (PVP) is examined. It is observed that, during ligand removal, the cubes move over large distances on the substrate, leading to both spontaneous self-assembly and epitaxy to form single crystals. Subsequently, atomically resolved images are used to quantify the strain and dislocation density at the epitaxial interfaces between cubes with different lateral and angular misorientations. It is shown that dislocation- and strain-free interfaces form when the nanocubes align parallel to each other. Angular misalignment between adjacent cubes does not necessarily lead to grain boundaries but does cause dislocations, with higher densities associated with larger rotations.

8.
ACS Photonics ; 6(4): 1067-1072, 2019 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-31024982

RESUMEN

We investigate the nanoscale excitation of Ag nanocubes with coherent cathodoluminescence imaging spectroscopy (CL) to resolve the factors that determine the spatial resolution of CL as a deep-subwavelength imaging technique. The 10-30 keV electron beam coherently excites localized plasmons in 70 nm Ag cubes at 2.4 and 3.1 eV. The radiation from these plasmon modes is collected in the far-field together with the secondary electron intensity. CL line scans across the nanocubes show exponentially decaying tails away from the cube that reveal the evanescent coupling of the electron field to the resonant plasmon modes. The measured CL decay lengths range from 8 nm (10 keV) to 12 nm (30 keV) and differ from the calculated ones by only 1-3 nm. A statistical model of electron scattering inside the Ag nanocubes is developed to analyze the secondary electron images and compare them with the CL data. The Ag nanocube edges are derived from the CL line scans with a systematic error less than 3 nm. The data demonstrate that CL probes the electron-induced plasmon fields with nanometer accuracy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...