Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Bone Miner Metab ; 41(6): 760-771, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37673837

RESUMEN

INTRODUCTION: Bisphosphonate (BF) therapy is strongly related to the occurrence of medication-related osteonecrosis of the jaw (ONJ). However, no previous study has evaluated if there are sex-related differences on the ONJ establishment together with bone biomechanical alterations, and if they could have a synergy with the ZA treatment. MATERIALS AND METHODS: This study aimed to analyze the physicochemical properties of mineralized tissues in a zoledronate (ZA)-related osteonecrosis mouse model, by a 2 × 2-factorial design, considering sex (female/male) and treatment (ZA/Saline) factors (n = 8/group). After three ZA (1.0 mg/kg) or saline administrations (days 0, 7, 14), the lower left second molar was extracted (day 42). Further ZA administration (day 49) and euthanasia (day 70) were conducted. After confirmation of ZA-induced jaw necrosis (histologic and microtomographic analysis), spectroscopic and mechanical parameters were assessed. RESULTS: ZA-treated groups presented lower bone density due to impaired healing of tooth extraction socket. Sex-related alterations were also observed, with lower bone density in females. Regarding biomechanical parameters, sex and treatment exerted independent influences. ZA, although decreasing flexural modulus and yield stress, increases stiffness mainly due to a higher bone volume. Females show less resistance to higher loads compared to males (considering dimension-independent parameters). Additionally, ZA increases crystallinity in bone and dental structure (p < 0.05). In summary, although strongly related to osteonecrosis occurrence, ZA modifies bone and dental mineral matrix, improving bone mechanical properties. CONCLUSION: Despite sex-dependent differences in bone biomechanics and density, osteonecrosis was established with no sex influence. No synergistic association between sex and treatment factors was observed in this study.


Asunto(s)
Osteonecrosis de los Maxilares Asociada a Difosfonatos , Conservadores de la Densidad Ósea , Ratones , Animales , Masculino , Femenino , Ácido Zoledrónico/farmacología , Osteonecrosis de los Maxilares Asociada a Difosfonatos/patología , Difosfonatos/efectos adversos , Alveolo Dental , Densidad Ósea , Conservadores de la Densidad Ósea/efectos adversos
2.
Curr Microbiol ; 80(8): 251, 2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37351656

RESUMEN

The high incidence of Candida albicans infections has raised concerns regarding side effects and drug resistance, compounded by a limited number of alternative drugs. Silver nanoparticles (AgNPs) have prominent antimicrobial activity, but effective administration remains a challenge. In this study, AgNPs were synthesized via a green chemistry approach, using glucose as a reducing agent, and incorporated into an agar matrix to form a film (AgFilm). The AgNPs and AgFilm were characterized by Ultraviolet-visible (UV-vis) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), and atomic force microscopic (AFM). The UV-Vis spectra of the AgNPs and AgFilm showed bands at 415 and 413 nm, respectively. The PXRD and UV-Vis data suggest that the growth of AgNPs was effectively inhibited in the AgFilm. The diameter of AgNPs dispersed in AgFilm was 76 ± 42 nm, and the thickness of the film and 35 ± 3 µm. The antifungal activity of AgFilm was evaluated against 20 strains of C. albicans, demonstrating high antifungal activity with an inhibition zone of 19 ± 2 mm. Therefore, AgFilm could be a promising option for the treatment of superficial C. albicans infections.


Asunto(s)
Antifúngicos , Nanopartículas del Metal , Antifúngicos/farmacología , Plata/farmacología , Nanopartículas del Metal/química , Microscopía Electrónica de Rastreo , Extractos Vegetales/química , Espectroscopía Infrarroja por Transformada de Fourier , Antibacterianos/farmacología
3.
ACS Omega ; 5(1): 386-393, 2020 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-31956786

RESUMEN

Silver nanoparticles (AgNPs) have a large number of applications in technology and physical and biological sciences. These nanomaterials can be synthesized by chemical and biological methods. The biological synthesis using fungi represents a green approach for nanomaterial production that has the advantage of biocompatibility. This work studies silver nanoparticles (AgNPs) produced by fungi Rhodotorula glutinis and Rhodotorula mucilaginosa found in ordinary soil of the Universidade Federal do Ceará campus (Brazil). The biosynthesized AgNPs have a protein-capping layer involving a metallic Ag core. The focus of this paper is to investigate the size and structure of the capping layer, how it interacts with the Ag core, and how sensitive the system (core + protein) is to visible light illumination. For this, we employed SEM, AFM, photoluminescence spectroscopy, SERS, and dark-field spectroscopy. The AgNPs were isolated, and SEM measurements showed the average size diameter between 58 nm for R. glutinis and 30 nm for R. mucilaginosa. These values are in agreement with the AFM measurements, which also provided the average size diameter of 85 nm for R. glutinis and 56 nm for R. mucilaginosa as well as additional information about the average size of the protein-capping layers, whose found values were 24 and 21 nm for R. mucilaginosa and R. glutinis nanoparticles, respectively. The protein-capping layer structure seemed to be easily disturbed, and the SERS spectra were unstable. It was possible to identify Raman peaks that might be related to α-helix, ß-sheet, and protein mixed structures. Finally, dark-field microscopy showed that the silver cores are very stable, but some are affected by the laser energy due to heating or melting.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...