Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomolecules ; 14(4)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38672460

RESUMEN

A considerable effort has been spent in the past decades to develop targeted therapies for the treatment of demyelinating diseases, such as multiple sclerosis (MS). Among drugs with free radical scavenging activity and oligodendrocyte protecting effects, Edaravone (Radicava) has recently received increasing attention because of being able to enhance remyelination in experimental in vitro and in vivo disease models. While its beneficial effects are greatly supported by experimental evidence, there is a current paucity of information regarding its mechanism of action and main molecular targets. By using high-throughput RNA-seq and biochemical experiments in murine oligodendrocyte progenitors and SH-SY5Y neuroblastoma cells combined with molecular docking and molecular dynamics simulation, we here provide evidence that Edaravone triggers the activation of aryl hydrocarbon receptor (AHR) signaling by eliciting AHR nuclear translocation and the transcriptional-mediated induction of key cytoprotective gene expression. We also show that an Edaravone-dependent AHR signaling transduction occurs in the zebrafish experimental model, associated with a downstream upregulation of the NRF2 signaling pathway. We finally demonstrate that its rapid cytoprotective and antioxidant actions boost increased expression of the promyelinating Olig2 protein as well as of an Olig2:GFP transgene in vivo. We therefore shed light on a still undescribed potential mechanism of action for this drug, providing further support to its therapeutic potential in the context of debilitating demyelinating conditions.


Asunto(s)
Antioxidantes , Edaravona , Receptores de Hidrocarburo de Aril , Transducción de Señal , Animales , Humanos , Ratones , Antioxidantes/farmacología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Línea Celular Tumoral , Edaravona/farmacología , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Factor 2 Relacionado con NF-E2/metabolismo , Receptores de Hidrocarburo de Aril/efectos de los fármacos , Receptores de Hidrocarburo de Aril/metabolismo , Transducción de Señal/efectos de los fármacos , Pez Cebra/metabolismo
2.
Molecules ; 28(19)2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37836771

RESUMEN

Edaravone (EDA), an antioxidant drug approved for the treatment of ischemic stroke and amyotrophic lateral sclerosis, was recently proposed as a remyelinating candidate for the treatment of multiple sclerosis. Here, we synthesized twelve EDA analogues 2b-4c showing three substitution patterns A-C, searching for improved remyelinating agents and putative molecular targets responsible for their regenerative activity. We profiled them in three primary assays to determine their stimulation of oligodendrocyte progenitor cell metabolism (tetrazolium MTT assay), their antioxidant potential (2,2-diphenyl-1-picrylhydrazyl-DPPH assay) and to predict their bioavailability (virtual ADME profile). Active 4'-carboxylate 2b, 4'-ester 2c and N1-carbamate-4'-ester 4a were further characterized, justifying their in vitro effects and selecting 4a as a putative EDA 1 prodrug suitable for in vivo testing.


Asunto(s)
Esclerosis Amiotrófica Lateral , Antioxidantes , Humanos , Edaravona/farmacología , Edaravona/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Estrés Oxidativo , Ésteres/farmacología
3.
Pharmaceutics ; 13(12)2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34959343

RESUMEN

In multiple sclerosis (MS), oxidative stress (OS) is implicated in the neurodegenerative processes that occur from the beginning of the disease. Unchecked OS initiates a vicious circle caused by its crosstalk with inflammation, leading to demyelination, axonal damage and neuronal loss. The failure of MS antioxidant therapies relying on the use of endogenous and natural compounds drives the application of novel approaches to assess target relevance to the disease prior to preclinical testing of new drug candidates. To identify drugs that can act as regulators of intracellular oxidative homeostasis, we applied an in silico approach that links genome-wide MS associations and molecular quantitative trait loci (QTLs) to proteins of the OS pathway. We found 10 drugs with both central nervous system and oral bioavailability, targeting five out of the 21 top-scoring hits, including arginine methyltransferase (CARM1), which was first linked to MS. In particular, the direction of brain expression QTLs for CARM1 and protein kinase MAPK1 enabled us to select BIIB021 and PEITC drugs with the required target modulation. Our study highlights OS-related molecules regulated by functional MS variants that could be targeted by existing drugs as a supplement to the approved disease-modifying treatments.

4.
Health Info Libr J ; 38(3): 237-241, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34272922

RESUMEN

In 2015, the Italian Ministry of Education in Italy launched innovative upper school educational programmes envisaging school-work initiatives. In this framework, the National Institute of Health (Istituto Superiore di Sanità, ISS) was among the first scientific institutions to develop educational programmes with school. Involving school students in health research activities allowed health literacy improvement, acquisition of scientific communication skills and fostered student interest in science careers. This article focuses on how health literacy and health promotion can be taught to school students through taking part in this programme. It is a multi-disciplinary collaboration among different stakeholders-ISS tutors (researchers, information and communication experts), teachers and students. This collaborative initiative is a good example of 'teaching and learning' in action since all stakeholders could benefit from cross-fertilisation in an informal educational context.


Asunto(s)
Promoción de la Salud , Aprendizaje , Humanos , Servicios de Información , Italia , Instituciones Académicas
5.
Front Cell Neurosci ; 14: 190, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32733206

RESUMEN

Signaling from central nervous system (CNS)-infiltrating lymphocytes and macrophages is critical to activate microglia and cause tissue damage in multiple sclerosis (MS). We combined laser microdissection with high-throughput real time RT-PCR to investigate separately the CNS exogenous and endogenous inflammatory components in postmortem brain tissue of progressive MS cases. A previous analysis of immune infiltrates isolated from the white matter (WM) and the meninges revealed predominant expression of genes involved in antiviral and cytotoxic immunity, including IFNγ and TNF. Here, we assessed the expression of 71 genes linked to IFN and TNF signaling and microglia/macrophage activation in the parenchyma surrounding perivascular cuffs at different stages of WM lesion evolution and in gray matter (GM) lesions underlying meningeal infiltrates. WM and GM from non-neurological subjects were used as controls. Transcriptional changes in the WM indicate activation of a classical IFNγ-induced macrophage defense response already in the normal-appearing WM, amplification of detrimental (proinflammatory/pro-oxidant) and protective (anti-inflammatory/anti-oxidant) responses in actively demyelinating WM lesions and persistence of these dual features at the border of chronic active WM lesions. Transcriptional changes in chronic subpial GM lesions indicate skewing toward a proinflammatory microglia phenotype. TNF receptor 2 (TNFR2) mediating TNF neuroprotective functions was one of the genes upregulated in the MS WM. Using immunohistochemistry we show that TNFR2 is highly expressed in activated microglia in the normal-appearing WM, at the border of chronic active WM lesions, and in foamy macrophages in actively demyelinating WM and GM lesions. In lysolecithin-treated mouse cerebellar slices, a model of demyelination and remyelination, TNFR2 RNA and soluble protein increased immediately after toxin-induced demyelination along with transcripts for microglia/macrophage-derived pro- and anti-inflammatory cytokines. TNFR2 and IL10 RNA and soluble TNFR2 protein remained elevated during remyelination. Furthermore, myelin basic protein expression was increased after selective activation of TNFR2 with an agonistic antibody. This study highlights the key role of cytotoxic adaptive immunity in driving detrimental microglia activation and the concomitant healing response. It also shows that TNFR2 is an early marker of microglia activation and promotes myelin synthesis, suggesting that microglial TNFR2 activation can be exploited therapeutically to stimulate CNS repair.

6.
Curr Med Chem ; 27(13): 2095-2105, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-30678613

RESUMEN

BACKGROUND: MS is a chronic inflammatory disease of the CNS leading to demyelination and neurodegeneration, with a complex and still to be clarified aetiology. Several data, coming from patients' samples and from animal models, show that Oxidative Status (OS) plays an important role in MS pathogenesis. Overproduction of reactive oxidative species by macrophages/microglia can bring about cellular injury and ensuing cell death by oxidizing cardinal cellular components. Oxidized molecules are present in active MS lesions and are associated with neurodegeneration. METHODS: We undertook a structured search of bibliographic databases for peer-reviewed research literature focusing on OS in MS. The contents of the selected papers were described in the context of a conceptual framework. A special emphasis was given to the results of our study in the field. RESULTS: The results of our three recent studies were put in the context and discussed taking into account the literature on the topic. Oxidative damage underpinned an imbalance shared by MS and neurodegenerative diseases such as Alzheimer and Parkinson diseases. In people with clinically isolated syndrome (an early phase of MS) oxidative stress proved to contribute to disease pathophysiology and to provide biomarkers that may help predict disease evolution. A drug screening platform based on multiple assays to test the remyelinating potential of library of approved compounds showed two anti-oxidants, edaravone and 5-methyl-7- methoxyisoflavone, as active drugs. Moreover, an analysis of 'structure activity relationship' showed off-targets sites of these compounds that accounted for their remyelinating activity, irrespective of their antioxidant action. CONCLUSION: Overall, edaravone emerges as a candidate to treat complex disease such as MS, where inflammation, oxidative stress and neurodegeneration contribute to disease progression, together or individually, in different phases and disease types. Furthermore, approaches based on drug repositioning seem to maintain the promise of helping discover novel treatment for complex diseases, where molecular targets are largely unknown.


Asunto(s)
Esclerosis Múltiple , Animales , Antioxidantes , Edaravona , Humanos , Oxidación-Reducción , Estrés Oxidativo
7.
PLoS One ; 10(6): e0130189, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26066624

RESUMEN

BACKGROUND: The potential role of the human immunodeficiency virus-1 (HIV-1) accessory protein Nef in the pathogenesis of neuroAIDS is still poorly understood. Nef is a molecular adapter that influences several cellular signal transduction events and membrane trafficking. In human macrophages, Nef expression induces the production of extracellular factors (e.g. pro-inflammatory chemokines and cytokines) and the recruitment of T cells, thus favoring their infection and its own transfer to uninfected cells via exosomes, cellular protrusions or cell-to-cell contacts. Murine cells are normally not permissive for HIV-1 but, in transgenic mice, Nef is a major disease determinant. Both in human and murine macrophages, myristoylated Nef (myr+Nef) treatment has been shown to activate NF-κB, MAP kinases and interferon responsive factor 3 (IRF-3), thereby inducing tyrosine phosphorylation of signal transducers and activator of transcription (STAT)-1, STAT-2 and STAT-3 through the production of proinflammatory factors. METHODOLOGY/PRINCIPAL FINDINGS: We report that treatment of BV-2 murine microglial cells with myr+Nef leads to STAT-1, -2 and -3 tyrosine phosphorylation and upregulates the expression of inducible nitric oxide synthase (iNOS) with production of nitric oxide. We provide evidence that extracellular Nef regulates iNOS expression through NF-κB activation and, at least in part, interferon-ß (IFNß) release that acts in concert with Nef. All of these effects require both myristoylation and a highly conserved acidic cluster in the viral protein. Finally, we report that Nef induces the release of neurotoxic factors in the supernatants of microglial cells. CONCLUSIONS: These results suggest a potential role of extracellular Nef in promoting neuronal injury in the murine model. They also indicate a possible interplay between Nef and host factors in the pathogenesis of neuroAIDS through the production of reactive nitrogen species in microglial cells.


Asunto(s)
Macrófagos/patología , Microglía/patología , Ácido Mirístico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico/metabolismo , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo , Animales , Western Blotting , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Humanos , Técnicas para Inmunoenzimas , Interferón gamma/genética , Interferón gamma/metabolismo , Macrófagos/metabolismo , Ratones , Microglía/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Fosforilación , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/genética
8.
Biochem Biophys Res Commun ; 440(2): 336-41, 2013 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-24076392

RESUMEN

The neuroprotective role of TNF receptor 2 (TNFR2) has been shown in various studies. However, a direct role of TNFR2 in oligodendrocyte function has not yet been demonstrated. Using primary oligodendrocytes of transgenic mice expressing human TNFR2, we show here that TNFR2 is primarily expressed on oligodendrocyte progenitor cells. Interestingly, preconditioning with a TNFR2 agonist protects these cells from oxidative stress, presumably by increasing the gene expression of distinct anti-apoptotic and detoxifying proteins, thereby providing a potential mechanism for the neuroprotective role of TNFR2 in oligodendrocyte progenitor cells.


Asunto(s)
Oligodendroglía/efectos de los fármacos , Receptores Tipo II del Factor de Necrosis Tumoral/fisiología , Células Madre/efectos de los fármacos , Animales , Proteínas Reguladoras de la Apoptosis/biosíntesis , Humanos , Ratones , Ratones Transgénicos , Oligodendroglía/fisiología , Estrés Oxidativo , Receptores Tipo II del Factor de Necrosis Tumoral/agonistas , Receptores Tipo II del Factor de Necrosis Tumoral/biosíntesis
9.
Mol Cell Neurosci ; 45(3): 234-44, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20600925

RESUMEN

Fine regulation of the innate immune response following brain injury or infection is important to avoid excessive activation of microglia and its detrimental consequences on neural cell viability and function. To get insights on the molecular networks regulating microglia activation, we analyzed expression, regulation and functional relevance of tumor necrosis factor receptors (TNFR) 2 in cultured mouse microglia. We found that microglia upregulate TNFR2 mRNA and protein and shed large amounts of soluble TNFR2, but not TNFR1, in response to pro-inflammatory stimuli and through activation of TNFR2 itself. By microarray analysis, we demonstrate that TNFR2 stimulation in microglia regulates expression of genes involved in immune processes, including molecules with anti-inflammatory and neuroprotective function like granulocyte colony-stimulating factor, adrenomedullin and IL-10. In addition, we identify IFN-γ as a regulator of the balance between pro- and anti-inflammatory/neuroprotective factors induced by TNFR2 stimulation. These data indicate that, through TNFR2, microglia may contribute to the counter-regulatory response activated in neuropathological conditions.


Asunto(s)
Inflamación/inmunología , Microglía/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Transducción de Señal/fisiología , Animales , Células Cultivadas , Regulación de la Expresión Génica , Factor Estimulante de Colonias de Granulocitos/metabolismo , Interferón gamma/inmunología , Interleucina-10/metabolismo , Ratones , Análisis por Micromatrices , Microglía/citología , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/genética , Factor de Necrosis Tumoral alfa/metabolismo
10.
Clin Immunol ; 129(2): 286-94, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18753013

RESUMEN

Evidence suggests that T-cell response to myelin basic protein (MBP) plays an important role in multiple sclerosis (MS). However, the mechanism of generation for MBP immunogenic epitopes is unclear. A series of specific CD4(+) T-cell lines was obtained by stimulating peripheral blood mononuclear cells from MS patients with synthetic peptides spanning the entire MBP sequence. T-cell lines recognizing MBP(8-27), MBP(13-32), and MBP(23-42) peptides, whose sequences are identical for humans and rats, specifically proliferated and produced large amounts of interferon-gamma in response to autologous dendritic cells (DCs) loaded in vitro with apoptotic rat oligodendrocytes. Results suggest that MBP epitopes generated from enzymatic processing of apoptotic glial cells by DCs might be relevant to MS pathogenesis.


Asunto(s)
Apoptosis , Células Dendríticas/inmunología , Epítopos de Linfocito T , Esclerosis Múltiple/etiología , Proteína Básica de Mielina/inmunología , Oligodendroglía/inmunología , Adulto , Secuencia de Aminoácidos , Animales , Células Cultivadas , Citocinas/biosíntesis , Femenino , Antígenos HLA-DR/genética , Antígenos de Histocompatibilidad Clase II/metabolismo , Humanos , Activación de Linfocitos , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Proteína Básica de Mielina/química , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...