Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Dairy Sci ; 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38278300

RESUMEN

Our objectives were to determine the effects of reducing dietary crude protein (CP) concentration on nutrient digestibility, rumen function, N balance, and serum AA concentration for dairy cows in late lactation. At the initiation of the experimental period, we stratified Holstein cows (n = 128; mean ± standard deviation 224 ± 54 d in milk) by parity and days pregnant (86 ± 25 d) and assigned them to 1 of 16 pens. For 3 wk, all cows received a covariate diet containing 16.9% CP [dry matter (DM) basis]. For the subsequent 12 wk, we assigned pens to 1 of 4 treatments containing 16.2, 14.4, 13.4, or 11.9% CP (DM basis) in a randomized complete block design. Diets were fed as a total mixed ration once daily. To reduce dietary CP, we replaced soybean meal with soybean hulls in the concentrate mix (DM basis). Diet evaluations suggested that several EAA, especially His, limited productivity as dietary CP declined. Digestibility of DM and CP decreased linearly with dietary CP reduction. Digestibility of neutral detergent fiber and potentially digestible neutral detergent fiber tended to respond in a quadratic pattern with the greatest digestibility at intermediate treatments. The reduction in dietary CP did not affect ruminal pH, but ruminal ammonia-N and branched-chain VFA concentrations declined linearly. The concentration of milk urea-N and plasma urea-N, secretion of milk N, and excretions of fecal N, urinary N, urinary urea-N, and unaccounted N decreased linearly with the reduction in dietary CP concentration. Urinary N expressed as a percentage of N intake was unaffected by dietary CP. Serum concentrations of total essential AA and non-essential AA were unaffected by dietary CP concentration. However, the ratio of essential to non-essential AA decreased with decreasing dietary CP. Serum 3-methylhistidine concentration increased linearly with decreasing dietary CP concentration, indicating greater skeletal muscle breakdown. Although our trial confirmed that reducing dietary CP decreased absolute excretion of urinary N, diet evaluations suggested that milk protein production decreased as certain essential AA became increasingly limited. Thus, reduced-CP diets have the potential to lessen reactive-N outputs of late lactation cows, but more research is needed to design diets that minimize deleterious effects on productivity.

2.
J Dairy Sci ; 105(9): 7462-7481, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35931475

RESUMEN

Manure nitrogen (N) from cattle contributes to nitrous oxide and ammonia emissions and nitrate leaching. Measurement of manure N outputs on dairy farms is laborious, expensive, and impractical at large scales; therefore, models are needed to predict N excreted in urine and feces. Building robust prediction models requires extensive data from animals under different management systems worldwide. Thus, the study objectives were (1) to collate an international database of N excretion in feces and urine based on individual lactating dairy cow data from different continents; (2) to determine the suitability of key variables for predicting fecal, urinary, and total manure N excretion; and (3) to develop robust and reliable N excretion prediction models based on individual data from lactating dairy cows consuming various diets. A raw data set was created based on 5,483 individual cow observations, with 5,420 fecal N excretion and 3,621 urine N excretion measurements collected from 162 in vivo experiments conducted by 22 research institutes mostly located in Europe (n = 14) and North America (n = 5). A sequential approach was taken in developing models with increasing complexity by incrementally adding variables that had a significant individual effect on fecal, urinary, or total manure N excretion. Nitrogen excretion was predicted by fitting linear mixed models including experiment as a random effect. Simple models requiring dry matter intake (DMI) or N intake performed better for predicting fecal N excretion than simple models using diet nutrient composition or milk performance parameters. Simple models based on N intake performed better for urinary and total manure N excretion than those based on DMI, but simple models using milk urea N (MUN) and N intake performed even better for urinary N excretion. The full model predicting fecal N excretion had similar performance to simple models based on DMI but included several independent variables (DMI, diet crude protein content, diet neutral detergent fiber content, milk protein), depending on the location, and had root mean square prediction errors as a fraction of the observed mean values of 19.1% for intercontinental, 19.8% for European, and 17.7% for North American data sets. Complex total manure N excretion models based on N intake and MUN led to prediction errors of about 13.0% to 14.0%, which were comparable to models based on N intake alone. Intercepts and slopes of variables in optimal prediction equations developed on intercontinental, European, and North American bases differed from each other, and therefore region-specific models are preferred to predict N excretion. In conclusion, region-specific models that include information on DMI or N intake and MUN are required for good prediction of fecal, urinary, and total manure N excretion. In absence of intake data, region-specific complex equations using easily and routinely measured variables to predict fecal, urinary, or total manure N excretion may be used, but these equations have lower performance than equations based on intake.


Asunto(s)
Lactancia , Nitrógeno , Animales , Bovinos , Dieta/veterinaria , Fibras de la Dieta/metabolismo , Femenino , Estiércol , Leche/química , Nitrógeno/metabolismo , Urea/metabolismo
3.
J Dairy Sci ; 103(3): 2264-2271, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31864747

RESUMEN

The effects of feeding a quebracho-chestnut tannin extract mixture on performance and nitrogen (N) utilization were assessed with 36 multiparous lactating Holstein cows (mean ± standard deviation; 706 ± 59 kg of body weight; 126 ± 20 d in milk) randomly assigned to 3 dietary treatments in a randomized complete block design. Following a 2-wk covariate adjustment period, cows were fed their assigned treatment diets for 13 wk. Rice hulls were removed from a total mixed ration with a 54:46 forage:concentrate ratio (% of dry matter; DM), and a tannin extract mixture from quebracho and chestnut trees (2:1 ratio) was included at 0, 0.45, and 1.80% of dietary DM. There was no interaction between dietary treatments and experimental week for the reported measurements except milk lactose percentage. Overall, treatments did not affect milk yield (48.6 ± 7.8 kg/d), fat- and protein-corrected milk (46.1 ± 7.6 kg/d), milk fat content (3.88 ± 0.65%) and yield (1.85 ± 0.38 kg/d), and true protein yield (1.45 ± 0.21 kg/d). However, incremental levels of tannin extracts in the diet produced a linear increase in DM intake (29.2 to 30.9 kg/d) and a linear decrease in kilograms of milk per kilogram of DM intake (1.67 to 1.57 kg/kg) and MUN (12.2 to 10.8 mg/dL). Furthermore, there was a quadratic effect of tannin extracts on milk true protein content (2.96, 3.13, and 3.00% for 0, 0.45, and 1.80% tannin extract, respectively) and a tendency for linear and quadratic response for body weight gain (0.31, 0.16, and 0.44 kg/d for 0, 0.45, and 1.80% tannin, respectively). Intake of N increased linearly (782, 795, and 820 g/d) and N utilization efficiency (milk N/intake N) decreased linearly (0.300, 0.301, and 0.275 for 0, 0.45, and 1.80% tannin, respectively). Relative to the 0% diet, 1.80% tannin extract reduced estimated urinary N excretion by 11%. In this study, adding 0.45% tannin extract to the diet reduced feed efficiency but had a positive effect on milk protein content. Feeding a tannin extract mixture from quebracho and chestnut may reduce environmental labile urinary N excretion without affecting milk yield but at the expense of a lower feed utilization efficiency.


Asunto(s)
Anacardiaceae/química , Bovinos/fisiología , Fagaceae/química , Leche/metabolismo , Nitrógeno/metabolismo , Taninos/administración & dosificación , Alimentación Animal/análisis , Animales , Peso Corporal/efectos de los fármacos , Dieta/veterinaria , Femenino , Glucolípidos/análisis , Glicoproteínas/análisis , Lactancia/efectos de los fármacos , Lactosa/análisis , Gotas Lipídicas , Leche/química , Proteínas de la Leche/análisis , Extractos Vegetales/administración & dosificación , Extractos Vegetales/química , Distribución Aleatoria
4.
J Dairy Sci ; 102(2): 1281-1293, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30591340

RESUMEN

Our objectives were to determine the effects of readily rumen-available carbohydrate source (refined starch vs. dextrose), the level of rumen-degradable protein (RDP), and their interaction on lactation performance, ruminal measurements, enteric methane (CH4) emission, nutrient digestibility, and nitrogen (N) balance in lactating dairy cows. Eighteen mid-lactation multiparous Holstein cows were used in this split-plot study. The main plots were created by randomly assigning 9 cows to diets of 11 or 9% RDP obtained by altering the percentage of soybean meal, expeller soybean meal, and blood meal in the diet. All diets included 16.4% crude protein. In the subplots, the effects of 0:10, 5:5, and 10:0 refined starch:dextrose ratio (% of dietary dry matter) were determined in three 3 × 3 Latin squares by randomly assigning the 9 cows in each RDP level into squares. Each period lasted 4 wk, with the last 2 wk allotted for sample collection. Carbohydrate source × RDP level interaction tended to influence dry matter intake (DMI), the concentration of urinary N, and urinary urea-N. Replacing refined starch with dextrose increased DMI, the molar percentage of ruminal butyrate and valerate, daily CH4 production (g/d), and fecal N and decreased the molar percentage of ruminal branched-chain volatile fatty acids, feed efficiency (fat- and protein-corrected milk/DMI), and N use efficiency (milk N/intake N) but did not influence nutrient digestibility. Enteric CH4 production was negatively related to the molar percentage of ruminal propionate but positively related to the molar percentage of ruminal butyrate. Treatments did not influence milk production responses, but cows fed 9% RDP diets had lower ruminal ammonia concentration (7.2 vs. 12.3 mg/dL) and tended to excrete less urinary purine derivatives (428 vs. 493 mmol/d) compared with cows fed 11% RDP diets, suggesting lower ruminal synthesis of microbial protein. Reducing the level of RDP in iso-nitrogenous diets had no effect on nutrient apparent total-tract digestibility, manure excretion and composition, N balance, and CH4 production. In this study, treatments did not affect yield (20.0 g of CH4/kg of DMI) or intensity (13.1 g of CH4/kg of fat- and protein-corrected milk), but methane production (g of CH4/d) was 7.0% lower and N use efficiency (conversion of intake N into milk protein) was 7.8% higher for cows fed a diet of 28.1% starch and 4.6% water-soluble carbohydrate compared with diets with lower starch and higher water-soluble carbohydrate contents.


Asunto(s)
Bovinos/metabolismo , Glucosa/metabolismo , Metano/metabolismo , Proteínas de la Leche/metabolismo , Leche/metabolismo , Nitrógeno/metabolismo , Rumen/metabolismo , Almidón/metabolismo , Amoníaco/metabolismo , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Digestión , Ácidos Grasos/metabolismo , Heces/química , Femenino , Lactancia , Proteínas de la Leche/análisis , Nitrógeno/análisis , Glycine max/metabolismo
5.
J Dairy Sci ; 100(7): 5434-5448, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28501404

RESUMEN

The objectives of this study were to measure performance responses and to evaluate indictors of N utilization in late-lactation cows fed diets with incremental reductions in crude protein (CP) concentration. Holstein cows (n = 128; 224 ± 54 d in milk) were stratified by parity and days pregnant (86 ± 25 d) and randomly assigned to 1 of 16 pens in a randomized complete block design. For 3 wk, all cows received a covariate diet containing 16.9% CP [dry matter (DM) basis]. For the subsequent 12 wk, pens were randomly assigned to 1 of 4 treatments that contained 16.2, 14.4, 13.1, or 11.8% CP (DM basis). Diets were offered once daily and contained 32.5% corn silage, 32.5% alfalfa silage, 13.5% high-moisture corn, and 21.5% concentrate mix. A reduction in dietary CP was achieved by replacing soybean meal with soy hulls in the concentrate mix (DM basis). Dry matter intake, milk urea N (MUN; mg/dL), and the yield of milk urea N (g/d) decreased linearly with dietary CP. Compared with a 16.2% CP diet, a 14.4% CP diet did not alter milk yield throughout the study, but the 13.1 and 11.8% CP diets reduced milk yield after 4 and 1 wk, respectively. Furthermore, milk protein percentage was reduced for all dietary CP less than 16.2%, but this negative effect was temporary and disappeared after 7 wk for the 14.4% CP diet. In contrast, MUN adjusted to a new steady state within 1 wk for all dietary treatments. Modeling quadratic responses with a plateau led to predictions of no reduction in fat- and protein-corrected milk (32.6 kg/d) and yields of fat (1.31 kg/d), lactose (1.49 kg/d), and true protein (1.12 kg/d) until dietary CP decreased below 15.5, 15.3, 15.9, and 16.2%, respectively. In this study, MUN and the yield of MUN were highly correlated with N intake, milk protein yield, and fat- and protein-corrected milk. Surprisingly, N use efficiency (milk protein N/intake N) was not correlated with any variables related to N utilization and reached an apparent upper limit of approximately 30%. Although this observation may be associated with feeding diets deficient in metabolizable protein, late-lactation cows in this study adjusted to low dietary CP concentration better than anticipated as milk production was 2.6, 3.6, 6.4, and 8.0 kg/d higher than National Research Council (2001)-predicted metabolizable protein-allowable milk for dietary CP of 16.2, 14.4, 13.1, and 11.8%, respectively.


Asunto(s)
Dieta/veterinaria , Proteínas en la Dieta/farmacología , Lactancia , Nitrógeno/metabolismo , Ensilaje , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Bovinos , Proteínas en la Dieta/administración & dosificación , Femenino , Leche/química , Paridad , Embarazo , Distribución Aleatoria , Rumen , Zea mays
6.
J Dairy Sci ; 99(6): 4476-4486, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27060814

RESUMEN

Our objective was to determine the effects of a tannin mixture extract on lactating cow performance, rumen fermentation, and N partitioning, and whether responses were affected by dietary crude protein (CP). The experiment was conducted as a split-plot with 24 Holstein cows (mean ± standard deviation; 669±55kg of body weight; 87±36 d in milk; 8 ruminally cannulated) randomly assigned to a diet of [dry matter (DM) basis] 15.3 or 16.6% CP (whole plot) and 0, 0.45, 0.90, or 1.80% of a tannin mixture in three 4×4 Latin squares within each level of CP (sub-plot). Tannin extract mixture was from quebracho and chestnut trees (2:1 ratio). Dietary CP level did not influence responses to tannin supplementation. A linear decrease in DM intake (25.5 to 23.4kg/d) was found, as well as a linear increase in milk/DM intake (1.62 to 1.75) and a trend for a linear decrease in fat-and-protein-corrected milk (38.4 to 37.1kg/d) with increasing levels of tannin supplementation. In addition, there was a negative linear effect for milk urea N (14.0 to 12.9mg/dL), milk protein yield (1.20 to 1.15kg), and concentration (2.87 to 2.83%). Furthermore, the change in milk protein concentration tended to be quadratic, and predicted maximum was 2.89% for a tannin mixture fed at 0.47% of dietary DM. Tannin supplementation reduced ruminal NH3-N (11.3 to 8.8mg/dL), total branched-chain volatile fatty acid concentration (2.97 to 2.47mol/100mol), DM, organic matter, CP, and neutral detergent fiber digestibility. Dietary tannin had no effect on intake N (587±63g/d), milk N (175±32g/d), or N utilization efficiency (29.7±4.4%). However, feeding tannin extracts linearly increased fecal N excretion (214 to 256g/d), but reduced urinary N (213 to 177g/d) and urinary urea N (141 to 116g/d) excretion. Decreasing dietary CP did not influence milk production, but increased N utilization efficiency (milk N/N intake; 0.27 to 0.33), and decreased milk urea N (15.4 to 11.8mg/dL), ruminal NH3-N (11.0 to 9.3mg/dL), apparent digestibility of DM (66.1 to 62.6%), organic matter (68.2 to 64.3%), and CP (62.9 to 55.9%), as well as urinary N excretion (168 vs. 232g/d). Results of this study indicated beneficial effects of 0.45% tannin extract in the diet on milk protein content. Increasing tannin extract levels in the diet lowered urinary N excretion, but had detrimental effects on DM intake, milk protein content, milk protein yield, and nutrient digestibility.


Asunto(s)
Anacardiaceae/química , Fenómenos Fisiológicos Nutricionales de los Animales/efectos de los fármacos , Bovinos/fisiología , Fagaceae/química , Taninos Hidrolizables/administración & dosificación , Proantocianidinas/administración & dosificación , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Proteínas en la Dieta/metabolismo , Suplementos Dietéticos/análisis , Digestión/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Femenino , Nitrógeno/orina , Extractos Vegetales/administración & dosificación , Distribución Aleatoria , Rumen/efectos de los fármacos , Rumen/fisiología
7.
J Dairy Sci ; 98(6): 3938-50, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25841962

RESUMEN

The objective was to study repeatability and sources of variation in feed conversion efficiency [FCE, milk kg/kg dry matter intake (DMI)] of lactating cows in mid to late lactation. Trials 1 and 2 used 16 cows (106 to 368 d in milk) grouped in 8 pairs of 1 high- and 1 low-FCE cow less than 16 d in milk apart. Trial 1 determined the repeatability of FCE during a 12-wk period. Trial 2 quantified the digestive and metabolic partitioning of energy and N with a 3-d total fecal and urine collection and measurement of CH4 and CO2 emission. Trial 3 studied selected ruminal methanogens in 2 pairs of cows fitted with rumen cannulas. Cows received a single diet including 28% corn silage, 27% alfalfa silage, 17% crude protein, and 28% neutral detergent fiber (dry matter basis). In trial 1, mean FCE remained repeatedly different and averaged 1.83 and 1.03 for high- and low-FCE cows, respectively. In trial 2, high-FCE cows consumed 21% more DMI, produced 98% more fat- and protein-corrected milk, excreted 42% less manure per kilogram of fat- and protein-corrected milk, but emitted the same daily amount of CH4 and CO2 compared with low-FCE cows. Percentage of gross energy intake lost in feces was higher (28.6 vs. 25.9%), but urinary (2.76 vs. 3.40%) and CH4 (5.23 vs. 6.99%) losses were lower in high- than low-FCE cows. Furthermore, high-FCE cows partitioned 15% more of gross energy intake toward net energy for maintenance, body gain, and lactation (37.5 vs. 32.6%) than low-FCE cows. Lower metabolic efficiency and greater heat loss in low-FCE cows might have been associated in part with greater energy demand for immune function related to subclinical mastitis, as somatic cell count was 3.8 fold greater in low- than high-FCE cows. As a percentage of N intake, high-FCE cows tended to have greater fecal N (32.4 vs. 30.3%) and had lower urinary N (32.2 vs. 41.7%) and greater milk N (30.3 vs. 19.1%) than low-FCE cows. In trial 3, Methanobrevibacter spp. strain AbM4 was less prevalent in ruminal content of high-FCE cows, which emitted less CH4 per unit of DMI and per unit of neutral detergent fiber digested than low-FCE cows. Thus lower digestive efficiency was more than compensated by greater metabolic efficiencies in high- compared with low-FCE cows. There was not a single factor, but rather a series of mechanisms involved in the observed differences in efficiency of energy utilization of the lactating cows in this study.


Asunto(s)
Bovinos/fisiología , Dieta/veterinaria , Digestión/fisiología , Metabolismo Energético , Leche/metabolismo , Nitrógeno/metabolismo , Alimentación Animal , Animales , Fibras de la Dieta , Ingestión de Energía , Heces/química , Femenino , Lactancia , Medicago sativa , Proteínas de la Leche/metabolismo , Rumen/metabolismo , Ensilaje , Zea mays
8.
J Dairy Sci ; 98(1): 418-30, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25465537

RESUMEN

Two trials were conducted simultaneously to study the effects of varying alfalfa silage (AS) to corn silage (CS) ratio in diets formulated to avoid excess protein or starch on lactating dairy cow performance, digestibility, ruminal parameters, N balance, manure production and composition, and gaseous emissions [carbon dioxide (CO2), methane (CH4), and ammonia-N (NH3-N)]. In trial 1 all measurements, except gas emissions, were conducted on 8 rumen-cannulated cows in replicated 4×4 Latin squares. In trial 2, performance and emissions were measured on 16 cows randomly assigned to 1 of 4 air-flow controlled chambers in a 4×4 Latin square. Dietary treatments were fed as total mixed rations with forage-to-concentrate ratio of 55:45 [dietary dry matter (DM) basis] and AS:CS ratios of 20:80, 40:60, 60:40, and 80:20 (forage DM basis). Measurements were conducted the last 3d of each 21-d period. Treatments did not affect DM intake, DM digestibility, and milk/DM intake. However, responses were quadratic for fat-and-protein-corrected milk, fat, and protein production, which reached predicted maxima for AS:CS ratio of 50:50, 49:51, and 34:66, respectively. Nitrogen use efficiency (milk N/N intake) decreased from 31 to 24g/100g as AS:CS ratio increased from 20:80 to 80:20. Treatments did not alter NH3-N/milk-N but tended to have a quadratic effect on daily NH3-N emission. Treatments had a quadratic effect on daily CH4 emission, which was high compared with current literature; they influenced CH4 emission per unit of neutral detergent fiber (NDF) intake and tended to influence CO2/NDF intake. Ruminal acetate-to-propionate ratio and total-tract NDF digestibility increased linearly with increasing AS:CS ratio. In addition, as AS:CS ratio increased from 20:80 to 80:20, NDF digested increased linearly from 2.16 to 3.24kg/d, but CH4/digested NDF decreased linearly from 270 to 190g/kg. These 2 counterbalancing effects likely contributed to the observed quadratic response in daily CH4 emission, which may have been influenced also by increasing starch with increasing CS in the diet as reflected by the increased ruminal propionate molar proportion. Overall, production performances were greatest for the intermediate AS:CS ratios (40:60 and 60:40), but daily excretion of urine, manure, fecal N, urinary urea N, and urinary N decreased with increasing proportion of CS in the diet, whereas daily CH4 emission was reduced for the 2 extreme AS:CS ratios (20:80 and 80:20). However, the proportion of AS and CS in the diet did not affect CH4/fat-and-protein corrected milk.


Asunto(s)
Amoníaco/metabolismo , Dióxido de Carbono/metabolismo , Bovinos/fisiología , Metano/metabolismo , Nitrógeno/metabolismo , Ensilaje/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Dieta/veterinaria , Fibras de la Dieta/metabolismo , Digestión , Heces/química , Femenino , Lactancia/fisiología , Estiércol , Medicago sativa , Leche/química , Proteínas de la Leche/análisis , Rumen/metabolismo , Zea mays
9.
J Dairy Sci ; 95(12): 7409-16, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23021756

RESUMEN

Sixteen 200-L barrels were used to determine the effects of dietary forage-to-concentrate (F:C) ratio on the rate of NH(3)-N, N(2)O, CH(4), and CO(2) emissions from dairy manure during a 77-d storage period. Manure was obtained from a companion study where cows were assigned to total mixed rations that included the following F:C ratio: 47:53, 54:46, 61:39, and 68:32 (diet dry matter basis) and housed in air-flow-controlled chambers constructed in a modified tiestall barn. On d 0 of this study, deposited manure and bedding from each emission chamber was thoroughly mixed, diluted with water (1.9 to 1 manure-to-water ratio) and loaded in barrels. In addition, on d 0, 7, 14, 28, 35, 49, 56, 63, 70, and 77 of storage, the rate of NH(3)-N, N(2)O, CH(4), and CO(2) emissions from each barrel were measured with a dynamic chamber and gas concentration measured with a photo-acoustic multi-gas monitor. Data were analyzed as a randomized complete block with 4 replications. Dietary F:C ratio had no effect on manure dry matter, total N and total ammoniacal-N (NH(3)-N + NH(4)(+)-N), or pH at the time of storage (mean ± SD: 10.6±0.6%, 3.0±0.2%, 93.1±18.1 mg/dL, and 7.8±0.5, respectively). No treatment differences were observed in the overall rate of manure NH(3)-N, N(2)O, CH(4), and CO(2) emissions (mean ± SD over the 77-d storage period; 117±25, 30±7, 299±62, and 15,396±753 mg/hr per m(2), respectively). The presence of straw bedding in manure promoted the formation of a surface crust that became air dried after about 1 mo of storage, and was associated with an altered pattern in NH(3)-N and N(2)O emissions in particular. Whereas NH(3)-N emission rate was highest on d 0 and gradually decreased until reaching negligible levels on d 35, N(2)O emission rate was almost zero the first 2 wk of storage, increased sharply to peak on d 35, and decreased subsequently. The emission rate of CH(4) and CO(2) peaked simultaneously on d 7, but decreased subsequently until the end of the storage period. In this study, C:N ratio of gaseous losses was 32:1, reflecting higher volatile C loss than volatile N loss during storage. On a CO(2)-equivalent basis, the most important source of non-CO(2) greenhouse gas emitted was CH(4) until formation of an air-dried crust, but N(2)O thereafter. Taken together, these results suggested that the formation of an air-dried crust resulting from the straw bedding present in the manure reduced drastically NH(3)-N, and CH(4) emissions, but was conducive of N(2)O production and emission.


Asunto(s)
Amoníaco/análisis , Dióxido de Carbono/análisis , Industria Lechera/métodos , Dieta/veterinaria , Estiércol/análisis , Metano/análisis , Óxido Nitroso/análisis , Animales , Bovinos , Industria Lechera/estadística & datos numéricos , Femenino
10.
J Dairy Sci ; 95(6): 3454-66, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22612981

RESUMEN

Twelve 200-L barrels were used to determine the effects of N content and straw addition on changes in chemical composition and volatile losses measured by mass balance of dairy manure during a 136-d storage period. In addition, on d 0, 3, 6, 12, 28, 56, and 136, rate of NH3-N emission was measured, and core samples were collected to characterize fermentation pattern. High N (3.06% N, HN) and low N (2.75% N, LN) manures were obtained from cows fed diets with 17.2 and 15.2% crude protein (dry matter basis), respectively. On d 0, manure scraped from a freestall barn floor was diluted with water to 10% dry matter and loaded in barrels with (+S) or without (-S) mixing 22g of chopped wheat straw per kilogram of undiluted manure. Data were analyzed as a randomized complete block with a 2×2 factorial arrangement of treatments and 3 replications. We observed no interaction between treatments for the reported measurements, but several day-of-storage by treatment interactions were found. Throughout storage, total NH3-N (TAN, NH3-N + NH4⁺-N; 71.9 vs. 104.3 mg/dL), pH (6.40 vs. 6.74), and total volatile fatty acids (TVFA, starting on d 12) were lower for LN relative to HN manure. In the presence of straw, crust formation occurred between d 12 and 28, and pH became lower and TVFA became higher starting on d 56, compared with no straw. Treatments did not influence loss of organic matter, organic N, organic C, or N, which averaged 31, 29, 26, and 20%, respectively. However, neutral detergent fiber loss was 44% higher for +S relative to -S manure. Consistent reductions in the C:N ratio indicated proportionally higher volatile C loss than volatile N loss during storage. Overall rate of NH3-N emission was 36% lower for LN than for HN manure. In the presence of straw, rate of NH3-N emission did not differ until after crust formation, but was 67% lower on d 56 and 95% lower on d 136, when it was barely detectable, compared with manure with no straw. Manure pH was highly correlated with TVFA:TAN ratio (r=-0.78), and rate of NH3-N emission was correlated with pH, TVFA:TAN, TVFA, and TAN (r=0.47, -0.44, -0.23, and 0.28, respectively). In this trial, both microbial fermentation and crust formation influenced NH3-N emission rate and other measured responses, highlighting the importance of long-term sampling to evaluate treatment effects in manure storage studies.


Asunto(s)
Amoníaco/análisis , Estiércol/análisis , Nitrógeno/análisis , Animales , Bovinos , Industria Lechera/métodos , Ambiente , Poaceae , Factores de Tiempo
11.
J Environ Qual ; 40(6): 1767-74, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22031559

RESUMEN

Excess crude protein (CP) in dairy cow diets is excreted mostly as urea nitrogen (N), which increases ammonia (NH) emissions from dairy farms and heightens human health and environmental concerns. Feeding less CP and more tannin to dairy cows may enhance feed N use and milk production, abate NH emissions, and conserve the fertilizer N value of manure. Lab-scale ventilated chambers were used to evaluate the impacts of CP and tannin feeding on slurry chemistry, NH emissions, and soil inorganic N levels after slurry application to a sandy loam soil and a silt loam soil. Slurry from lactating Holstein dairy cows (Bos taurus) fed two levels of dietary CP (low CP [LCP], 155 g kg; high CP [HCP], 168 g kg) each fed at four levels of dietary tannin extract, a mixture from red quebracho (Schinopsis lorentzii) and chestnut (Castanea sativa) trees (0 tannin [0T]; low tannin [LT], 4.5 g kg; medium tannin [MT], 9.0 g kg; and high tannin [HT], 18.0 g kg) were applied to soil-containing lab-scale chambers, and NH emissions were measured 1, 3, 6, 12, 24, 36, and 48 h after slurry application. Emissions from the HCP slurry were 1.53 to 2.57 times greater ( < 0.05) than from the LCP slurry. At trial's end (48 h), concentrations of inorganic N in soils were greater ( < 0.05) in HCP slurry-amended soils than in LCP slurry-amended soils. Emissions from HT slurry were 28 to 49% lower ( < 0.05) than emissions from 0T slurry, yet these differences did not affect soil inorganic N levels. Emissions from the sandy loam soil were 1.07 to 1.15 times greater ( < 0.05) than from silt loam soil, a result that decreased soil inorganic N in the sandy loam compared with the silt loam soil. Larger-scale and longer-term field trails are needed to ascertain the effectiveness of feeding tannin extracts to dairy cows in abating NH loss from land-applied slurry and the impact of tannin-containing slurry on soil N cycles.


Asunto(s)
Amoníaco/química , Alimentación Animal/análisis , Bovinos/metabolismo , Proteínas en la Dieta/metabolismo , Estiércol/análisis , Taninos/metabolismo , Contaminantes Atmosféricos/química , Animales , Bovinos/orina , Industria Lechera , Dieta/veterinaria , Suelo/química , Factores de Tiempo
12.
J Dairy Sci ; 94(6): 3081-93, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21605777

RESUMEN

Holstein cows housed in a modified tie-stall barn were used to determine the effect of feeding diets with different forage-to-concentrate ratios (F:C) on performance and emission of CH(4), CO(2) and manure NH(3)-N. Eight multiparous cows (means ± standard deviation): 620 ± 68 kg of body weight; 52 ± 34 d in milk and 8 primiparous cows (546 ± 38 kg of body weight; 93 ± 39 d in milk) were randomly assigned to 1 of 4 air-flow controlled chambers, constructed to fit 4 cows each. Chambers were assigned to dietary treatment sequences in a single 4 × 4 Latin square design. Dietary treatments, fed as 16.2% crude protein total mixed rations included the following F:C ratio: 47:53, 54:46, 61:39, and 68:32 [diet dry matter (DM) basis]. Forage consisted of alfalfa silage and corn silage in a 1:1 ratio. Cow performance and emission data were measured on the last 7 d and the last 4 d, respectively of each 21-d period. Air samples entering and exiting each chamber were analyzed with a photo-acoustic field gas monitor. In a companion study, fermentation pattern was studied in 8 rumen-cannulated cows. Increasing F:C ratio in the diet had no effect on DM intake (21.1 ± 1.5 kg/d), energy-corrected milk (ECM, 37.4 ± 2.2 kg/d), ECM/DM intake (1.81 ± 0.18), yield of milk fat, and manure excretion and composition; however, it increased milk fat content linearly by 7% and decreased linearly true protein, lactose, and solids-not-fat content (by 4, 1, and 2%, respectively) and yield (by 10, 6, and 6%, respectively), and milk N-to-N intake ratio. On average 93% of the N consumed by the cows in the chambers was accounted for as milk N, manure N, or emitted NH(3)-N. Increasing the F:C ratio also increased ruminal pH linearly and affected concentrations of butyrate and isovalerate quadratically. Increasing the F:C ratio from 47:53 to 68:32 increased CH(4) emission from 538 to 648 g/cow per day, but had no effect on manure NH(3)-N emission (14.1 ± 3.9 g/cow per day) and CO(2) emission (18,325 ± 2,241 g/cow per day). In this trial, CH(4) emission remained constant per unit of neutral detergent fiber intake (1g of CH(4) was emitted for every 10.3g of neutral detergent fiber consumed by the cow), but increased from 14.4 to 18.0 g/kg of ECM when the percentage of forage in the diet increased from 47 to 68%. Although the pattern of emission within a day was distinct for each gas, emissions were higher between morning feeding (0930 h) and afternoon milking (1600 h) than later in the day. Altering the level of forage within a practical range and rebalancing dietary crude protein with common feeds of the Midwest of the United States had no effects on manure NH(3)-N emission but altered CH(4) emission.


Asunto(s)
Amoníaco/análisis , Dióxido de Carbono/análisis , Bovinos/fisiología , Dieta/veterinaria , Lactancia/fisiología , Estiércol/análisis , Metano/biosíntesis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Femenino
13.
J Environ Qual ; 40(3): 907-14, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21546676

RESUMEN

Feeding more tannin and less crude protein (CP) to dairy cows may have synergistic impacts on reducing NH emissions from dairy barns. Three trials using lab-scale ventilated chambers with concrete floors were conducted to determine the impacts on NH emission of tannin and CP feeding, tannin feeding on urease activity in feces, and tannin application directly to the barn floor. For Trial 1, mixtures of feces and urine from lactating Holstein dairy cows () fed four levels (g kg) of dietary tannin extract [a mixture from red quebracho () and chestnut () trees]: 0 tannin (0T), 4.5 (low tannin [LT]), 9.0 (medium tannin [MT]), and 18.0 (high tannin [HT]); each fed at two levels (g kg) of dietary CP: 155 low CP (LCP) and 168 high CP (HCP) were applied to chambers. For Trial 2, urea solution was added to feces obtained from cows fed 0T, MT, and HT at HCP. For Trial 3, tannin amounts equivalent to those fed at 0T, MT, and HT were applied directly to feces-urine mixtures from 0T-HCP. For all trials, NH emissions were measured 1, 3, 6, 12, 24, 36, and 48 h after treatment application. For Trial 1, reductions in NH emission due to tannin feeding were greatest when fed at LCP: The LCP-LT and LCP-HT treatments emitted 30.6% less NH than LCP-0T, and the HCP-LT and HCP-HT treatments emitted 16.3% less NH than HCP-0T. For Trial 2, feeding tannin decreased urease activity in feces, resulting in an 11.5% reduction in cumulative NH loss. For Trial 3, the application of tannin directly to simulated barn floors also apparently decreased urease activity, resulting in an average reduction in cumulative NH emissions of 19.0%. Larger-scale trails are required to ascertain the effectiveness of tannin extracts in abating NH loss from dairy barn floors.


Asunto(s)
Contaminación del Aire/prevención & control , Amoníaco/metabolismo , Bovinos/metabolismo , Heces/química , Amoníaco/orina , Anacardiaceae/química , Alimentación Animal , Animales , Bovinos/orina , Industria Lechera , Proteínas en la Dieta/metabolismo , Fagaceae/química , Femenino , Vivienda para Animales , Nitrógeno/metabolismo , Taninos/metabolismo , Urea/química , Ureasa/metabolismo , Orina/química
14.
Animal ; 4(8): 1390-400, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22444659

RESUMEN

The main objective of this experiment was to monitor the impact of barn side and dietary crude protein (CP) on production performance, manure production and composition, and ammonia nitrogen (N) emission from a lactating dairy herd housed in a free-stall barn and managed under farm-like conditions throughout a number of months in each season of the year. The 78-cow lactating herd of the University of Wisconsin-Platteville (USA) was halved and each group was allocated to either the north or south side of the barn and either a recommended (REC) diet with 16.7 ± 1.3% CP dry matter basis (DM) or an excess (EXC) CP diet containing 1.5 units of CP above the REC diet (18.2 ± 1.5%). In 7 months between February 2004 and January 2005, total manure collection was conducted by manual scraping of the alleys and ammonia-N emission was calculated as intake N + bedding N - milk N - scraped manure N. Side of the barn (northern v. southern exposure) did not influence measurements and there was no effect of dietary CP on dry matter intake (DMI), milk, milk fat, and milk protein production, but a lower manure N concentration was observed for the group of cows fed the REC diet compared with the EXC diet (3.43% v. 3.66% of DM). Nitrogen intake was 63 g/day lower (643 v. 706 g/day), milk N was unaffected (157 g/day), manure N was 32 g/day lower (391 v. 423 g/day), and ammonia-N emission was 34 g/day lower (93 v. 127 g/day) for the group consuming the REC diet compared with the group consuming the EXC diet. There were larger variations in measured responses among months of the year than between level of dietary CP. Wet and dry manure excretions tended to be higher, but manure pH was reduced when corn silage became unavailable and the diet included additional corn grain and alfalfa silage as the only forage source. Prediction of manure N excretion for a group of cow determined as N intake - N milk was 9% higher than current prediction equations of the American Society of Agricultural Engineers. Ammonia-N loss averaged 110 g/day per lactating cow, but ranged from 64 g/day to 178 g/day with no clear seasonal pattern. There was no clear association between barn temperature, manure temperature or manure pH and ammonia-N emission; however, intake N explained 61% of the variation in ammonia-N emission.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...