Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
New Phytol ; 221(2): 818-833, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30252143

RESUMEN

Genome-wide association studies (GWAS) in plants typically suffer from limited statistical power. An alternative to the logistical and cost challenge of increasing sample sizes is to gain power by meta-analysis using information from independent studies. We carried out GWAS for growth traits with six single-marker models and regional heritability mapping (RHM) in four Eucalyptus breeding populations independently and by Joint-GWAS, using gene and segment-based models, with data for 3373 individuals genotyped with a communal EUChip60KSNP platform. While single-single nucleotide polymorphism (SNP) GWAS hardly detected significant associations at high-stringency in each population, gene-based Joint-GWAS revealed nine genes significantly associated with tree height. Associations detected using single-SNP GWAS, RHM and Joint-GWAS set-based models explained on average 3-20% of the phenotypic variance. Whole-genome regression, conversely, captured 64-89% of the pedigree-based heritability in all populations. Several associations independently detected for the same SNPs in different populations provided unprecedented GWAS validation results in forest trees. Rare and common associations were discovered in eight genes involved in cell wall biosynthesis and lignification. With the increasing adoption of genomic prediction of complex phenotypes using shared SNPs and much larger tree breeding populations, Joint-GWAS approaches should provide increasing power to pinpoint discrete associations potentially useful toward tree breeding and molecular applications.


Asunto(s)
Eucalyptus/genética , Genoma de Planta , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Carácter Cuantitativo Heredable , Patrón de Herencia/genética , Desequilibrio de Ligamiento/genética , Polimorfismo de Nucleótido Simple/genética , Análisis de Componente Principal
2.
New Phytol ; 194(1): 116-128, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22309312

RESUMEN

• Genomic selection (GS) is expected to cause a paradigm shift in tree breeding by improving its speed and efficiency. By fitting all the genome-wide markers concurrently, GS can capture most of the 'missing heritability' of complex traits that quantitative trait locus (QTL) and association mapping classically fail to explain. Experimental support of GS is now required. • The effectiveness of GS was assessed in two unrelated Eucalyptus breeding populations with contrasting effective population sizes (N(e) = 11 and 51) genotyped with > 3000 DArT markers. Prediction models were developed for tree circumference and height growth, wood specific gravity and pulp yield using random regression best linear unbiased predictor (BLUP). • Accuracies of GS varied between 0.55 and 0.88, matching the accuracies achieved by conventional phenotypic selection. Substantial proportions (74-97%) of trait heritability were captured by fitting all genome-wide markers simultaneously. Genomic regions explaining trait variation largely coincided between populations, although GS models predicted poorly across populations, likely as a result of variable patterns of linkage disequilibrium, inconsistent allelic effects and genotype × environment interaction. • GS brings a new perspective to the understanding of quantitative trait variation in forest trees and provides a revolutionary tool for applied tree improvement. Nevertheless population-specific predictive models will likely drive the initial applications of GS in forest tree breeding.


Asunto(s)
Cruzamiento , Eucalyptus/genética , Genoma de Planta/genética , Patrón de Herencia/genética , Selección Genética , Árboles/genética , Madera/crecimiento & desarrollo , Marcadores Genéticos , Genotipo , Modelos Genéticos , Carácter Cuantitativo Heredable , Madera/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...