RESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Croton argyrophyllus Kunth., commonly known as "marmeleiro" or "cassetinga," is widely distributed in the Brazilian Northeast region. Its leaves and flowers are used in traditional medicine as tranquilizers to treat flu and headaches. AIM OF THE STUDY: This study was conducted to determine the chemical composition and toxicological safety of essential oil from C. argyrophyllus leaves using in vitro and in vivo models. MATERIALS AND METHODS: The chemical composition of the essential oil was determined using a gas chromatograph coupled to a mass spectrometer. Cytotoxicity was tested in the HeLa, HT-29, and MCF-7 cell lines derived from human cells (Homo sapiens) and Vero cell lines derived from monkeys (Cercopithecus aethiops) using the MTT method. Acute toxicity, genotoxicity. Mutagenicity tests were performed in Swiss mice (Mus musculus), which were administered essential oil orally in a single dose of 2000 mg/kg by gavage. RESULTS: The main components of the essential oil were p-mentha-2-en-1-ol, α-terpineol, ß-caryophyllene, and ß-elemene. The essential oil exhibited more than 90% cytotoxicity in all cell lines tested. No deaths or behavioral, hematological, or biochemical changes were observed in mice, revealing no acute toxicity. In genotoxic and mutagenic analyses, there was no increase in micronuclei in polychromatic erythrocytes or in the damage and index in the comet assay. CONCLUSIONS: The essential oil was cytotoxic towards the tested cell lines but did not exert toxic effects or promote DNA damage when administered orally at a single dose of 2000 mg/kg in mice.
Asunto(s)
Croton , Aceites Volátiles , Hojas de la Planta , Animales , Croton/química , Aceites Volátiles/toxicidad , Aceites Volátiles/farmacología , Aceites Volátiles/química , Humanos , Chlorocebus aethiops , Ratones , Células Vero , Pruebas de Mutagenicidad , Administración Oral , Células HeLa , Células HT29 , Células MCF-7 , Masculino , Femenino , Supervivencia Celular/efectos de los fármacos , Pruebas de Toxicidad Aguda , Daño del ADN/efectos de los fármacosRESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Hymenaea cangaceira Pinto, Mansano & Azevedo (Fabaceae) is a Brazilian medicinal plant widely known as "Jatobá". In folk medicine, it is used to treat infections, respiratory problems, rheumatism, antitumoral, inflammation and pain, however, no activity has been scientifically validated. AIM OF THE STUDY: This study investigated chemical composition of essential oil from Hymenaea cangaceira (EOHc), antimicrobial, antinociceptive and antioxidant activities besides protection against DNA damage and hemolysis. MATERIAL AND METHODS: The essential oil was obtained by hydrodistillation, and characterized by GC-MS and GC-FID. The evaluation of antimicrobial activity was performed by microdilution method. The evaluation of the antioxidant activity was performed using the radicals DPPH, ABTS, O2- and OH-, and the protection of DNA damage using plasmid pBR322. Different experimental models were used to evaluate the antinociceptive effect (acetic acid and formalin), and evaluate the mechanisms of action involved with pharmacological antagonists (naloxone, atropine and gibenclamide) in mice. The essential oil was evaluated for hemolysis on human erythrocytes. RESULTS: The extraction of EOHc showed a yield of 0.18% on a dry basis, presenting high content of hydrocarbon sesquiterpenes (79.04%), high antioxidant activity and protect DNA from damage, besides presenting antifungal and antibacterial activity against Gram-positive and Gram-negative bacteria in vitro. It was found that the essential oil had no acute toxicity in mice up to 5000â¯mg/kg oral administration (o.a.), in addition to no hemolysis on human erythrocytes. The reduction of antinociceptive activity was 75%, with the opioid system as the mechanism of action. CONCLUSION: Our results validate the main activities by the traditional use attributed to H. cangaceira for antimicrobial and analgesic activity. In addition, the oil has a potent antioxidant activity, protecting the body against oxidative stress damage, adding new value to an endemic species not known to the industry.
Asunto(s)
Analgésicos/farmacología , Antibacterianos/farmacología , Antioxidantes/farmacología , Hymenaea/química , Aceites Volátiles/farmacología , Aceites de Plantas/farmacología , Ácido Acético/toxicidad , Analgésicos/química , Analgésicos/aislamiento & purificación , Animales , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Brasil , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Etanol/química , Etnofarmacología , Formaldehído/toxicidad , Humanos , Medicina Tradicional/métodos , Ratones , Pruebas de Sensibilidad Microbiana , Nocicepción/efectos de los fármacos , Aceites Volátiles/química , Aceites Volátiles/uso terapéutico , Dolor/inducido químicamente , Dolor/diagnóstico , Dolor/tratamiento farmacológico , Dimensión del Dolor , Aceites de Plantas/química , Aceites de Plantas/aislamiento & purificación , Pruebas de Toxicidad AgudaRESUMEN
Amoebic keratitis and granulomatous amoebic encephalitis are caused by some strains of free-living amoebae of the genus Acanthamoeba. In the case of keratitis, one of the greatest problems is the disease recurrence due to the resistance of parasites, especially the cystic forms, to the drugs that are currently used. Some essential oils of plants have been used as potential active agents against this protist. Thus, the aim of this study was to determine the amebicidal activity of essential oils from plants of the genus Lippia against Acanthamoeba polyphaga trophozoites. To that end, 8 × 10(4) trophozoites were exposed for 24 h to increasing concentrations of essential oils from Lippia sidoides, Lippia gracilis, Lippia alba, and Lippia pedunculosa and to their major compounds rotundifolone, carvone, and carvacrol. Nearly all concentrations of oils and compounds showed amebicidal activity. The IC50 values for L. sidoides, L. gracilis L. alba, and L. pedunculosa were found to be 18.19, 10.08, 31.79, and 71.47 µg/mL, respectively. Rotundifolone, carvacrol, and carvone were determined as the major compounds showing IC50 of 18.98, 24.74, and 43.62 µg/mL, respectively. With the exception of oil from L. alba, the other oils evaluated showed low cytotoxicity in the NCI-H292 cell line. Given these results, the oils investigated here are promising sources of compounds for the development of complementary therapy against amoebic keratitis and granulomatous amoebic encephalitis and can also be incorporated into cleaning solutions to increase their amebicidal efficiency.
Asunto(s)
Acanthamoeba/efectos de los fármacos , Amebicidas/farmacología , Aceites Volátiles/farmacología , Aceites de Plantas/farmacología , Verbenaceae/química , Amebicidas/química , Animales , Monoterpenos Ciclohexánicos , Cimenos , Humanos , Lippia , Monoterpenos/química , Monoterpenos/farmacología , Aceites Volátiles/química , Aceites de Plantas/química , Trofozoítos/efectos de los fármacosRESUMEN
The present study evaluated the toxicity of Microgramma vacciniifolia rhizome lectin (MvRL) to Artemia salina, human tumour cell lines (larynx epidermoid carcinoma Hep-2, NCI-H292 lung mucoepidermoid carcinoma, and chronic myelocytic leukaemia K562), and normal peripheral blood mononuclear cells (PBMCs), as well as to Biomphalaria glabrata embryos and adults. MvRL was toxic to A. salina (LC50=159.9 µg/mL), and exerted cytotoxic effects on NCI-H292 cells (IC50=25.23 µg/mL). The lectin (1-100 µg/mL) did not affect the viability of K562 and Hep-2 tumour cells, as well as of PBMCs. MvRL concentration of 1, 10, and 100 µg/mL promoted malformations (mainly exogastrulation) in 7.8%, 22.5%, and 27.7% of embryos, respectively, as well as delayed embryo development in 42.0%, 69.5%, and 54.7% of embryos, respectively. MvRL at a concentration of 100 µg/mL killed B. glabrata embryos (17.7%) and adults (25%). Further, MvRL damaged B. glabrata reproductive processes, which was evidenced by observations that snails exposed to the lectin (100 µg/mL) deposited fewer eggs than those in the control group, and approximately 40% of the deposited eggs exhibited malformations. Comparison of these results with that from A. salina assay indicates that MvRL is adulticidal at the concentration range which is toxic to environment. In conclusion, the cytotoxicity of MvRL on tumour cell and absence of toxicity to normal cell indicate its potential as chemotherapeutic drug. Also, the study revealed that the lectin is able to promote deleterious effects on B. glabrata embryos at environmentally safe concentrations.