Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39090227

RESUMEN

The present study aims to analyze the interaction between Rhodotorula toruloides and magnetic nanoparticles and evaluate their effect on carotenoid production. The manganese ferrite nanoparticles were synthesized without chitosan (MnFe2O4) and chitosan coating (MnFe2O4-CS) by the co-precipitation method assisted by hydrothermal treatment. XRD (X-ray diffraction), Magnetometry, Dynamic Light Scattering (DLS) and FTIR (Fourier-Transform Infrared Spectroscopy), are used to characterize the magnetic nanoparticles. The crystallite size of MnFe2O4 was 16 nm for MnFe2O4 and 20 nm for MnFe2O4-CS. The magnetic saturation of MnFe2O4-CS was lower (39.6 ± 0.6 emu/g) than the same MnFe2O4 nanoparticles (42.7 ± 0.3 emu/g), which was attributed to the chitosan fraction presence. The MnFe2O4-CS FTIR spectra revealed the presence of the characteristic chitosan bands. DLS demonstrated that the average hydrodynamic diameters were 344 nm for MnFe2O4 and 167 nm for MnFe2O4-CS. A kinetic study of cell immobilization performed with their precipitation with a magnet demonstrated that interaction between magnetic nanoparticles and R. toruloides was characterized by an equilibrium time of 2 h. The adsorption isotherm models (Langmuir and Freundlich) were fitted to the experimental values. The trypan blue assay was used for cell viability assessment. The carotenoid production increased to 256.2 ± 6.1 µg/g dry mass at 2.0 mg/mL MnFe2O4-CS. The use of MnFe2O4-CS to stimulate carotenoid yeast production and the magnetic separation of biomass are promising nanobiotechnological alternatives. Magnetic cell immobilization is a perspective technique for obtaining cell metabolites.

2.
Int J Biol Macromol ; 160: 953-963, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32497671

RESUMEN

Insects are considered as alternative sources of chitosan; however, studies about the functional film-forming properties of insect chitosan are scarce. Insect chitosan films were made from Tenebrio molitor and Brachystola magna and were compared with commercial chitosan of different molecular weights (Mw). Mechanical properties (tensile strength, TS; elastic modulus, EM; elongation at break, %E), water vapor permeability (WVP) and physicochemical properties were characterized. The film properties of both commercial and insect chitosan were affected by Mw. Commercial chitosan films showed that at lower Mw, the TS (from 59 to 48 MPa) and EM (from 1471 to 1286 MPa) decreased; whereas WVP (from 2.9 × 10-11 to 3.4 × 10-11 g m-1s-1Pa-1), % E (from 38 to 41%) and solubility (from 30 to 33%) increased. Chitosan insect films showed lower TS and EM, and higher WPV, %E and solubility than commercial films. SEM revealed that chitosan insect films had lower porosity than commercial films. FTIR and X-ray diffraction showed not difference between insect and commercial chitosan films. These results showed that T. molitor and B. magna chitosan films could be used as a packaging material in several food products.


Asunto(s)
Quitosano/química , Membranas Artificiales , Tenebrio/química , Animales , Fenómenos Químicos , Fenómenos Mecánicos , Peso Molecular , Reología , Solubilidad , Análisis Espectral , Vapor
3.
Materials (Basel) ; 11(4)2018 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-29642522

RESUMEN

Hybrid bionanocomposites based on cellulose matrix, with silica nanoparticles as reinforcers, were prepared by one-pot synthesis of cellulose surface modified by solvent exchange method to keep the biopolymer net void for hosting inorganic nanoparticles. Neither expensive inorganic-particle precursors nor crosslinker agents or catalysts were used for effective dispersion of reinforcer concentration up to 50 wt %. Scanning electron microscopy of the nanocomposites shows homogeneous dispersion of reinforcers in the surface modified cellulose matrix. The FTIR spectra demonstrated the cellulose features even at 50 weight percent content of silica nanoparticles. Such a high content of silica provides high thermal stability to composites, as seen by TGA-DSC. The fungi decay resistance to Trametes versicolor was measured by standard test showing good resistance even with no addition of antifungal agents. This one-pot synthesis of biobased hybrid materials represents an excellent way for industrial production of high performance materials, with a high content of inorganic nanoparticles, for a wide variety of applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA