Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Microbiol ; 25(12): 3364-3386, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37897125

RESUMEN

Methane-cycling is becoming more important in high-latitude ecosystems as global warming makes permafrost organic carbon increasingly available. We explored 387 samples from three high-latitudes regions (Siberia, Alaska and Patagonia) focusing on mineral/organic soils (wetlands, peatlands, forest), lake/pond sediment and water. Physicochemical, climatic and geographic variables were integrated with 16S rDNA amplicon sequences to determine the structure of the overall microbial communities and of specific methanogenic and methanotrophic guilds. Physicochemistry (especially pH) explained the largest proportion of variation in guild composition, confirming species sorting (i.e., environmental filtering) as a key mechanism in microbial assembly. Geographic distance impacted more strongly beta diversity for (i) methanogens and methanotrophs than the overall prokaryotes and, (ii) the sediment habitat, suggesting that dispersal limitation contributed to shape the communities of methane-cycling microorganisms. Bioindicator taxa characterising different ecological niches (i.e., specific combinations of geographic, climatic and physicochemical variables) were identified, highlighting the importance of Methanoregula as generalist methanogens. Methylocystis and Methylocapsa were key methanotrophs in low pH niches while Methylobacter and Methylomonadaceae in neutral environments. This work gives insight into the present and projected distribution of methane-cycling microbes at high latitudes under climate change predictions, which is crucial for constraining their impact on greenhouse gas budgets.


Asunto(s)
Euryarchaeota , Microbiota , Microbiota/genética , Euryarchaeota/genética , Humedales , Suelo/química , Metano
2.
PLoS One ; 17(9): e0271208, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36174070

RESUMEN

Coastal wetlands are ecosystems associated with intense carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) recycling, modulated by salinity and other environmental factors that influence the microbial community involved in greenhouse gases production and consumption. In this study, we evaluated the influence of environmental factors on GHG concentration and benthic microbial community composition in coastal wetlands along the coast of the semiarid region. Wetlands were situated in landscapes along a south-north gradient of higher aridity and lower anthropogenic impact. Our results indicate that wetlands have a latitudinal variability associated with higher organic matter content at the north, especially in summer, and higher nutrient concentration at the south, predominantly in winter. During our sampling, wetlands were characterized by positive CO2 µM and CH4 nM excess, and a shift of N2O nM excess from negative to positive values from the north to the south. Benthic microbial communities were taxonomically diverse with > 60 phyla, especially in low frequency taxa. Highly abundant bacterial phyla were classified into Gammaproteobacteria (Betaproteobacteria order), Alphaproteobacteria and Deltaproteobacteria, including key functional groups such as nitrifying and methanotrophic bacteria. Generalized additive model (GAM) indicated that conductivity accounted for the larger variability of CH4 and CO2, but the predictions of CH4 and CO2 concentration were improved when latitude and pH concentration were included. Nitrate and latitude were the best predictors to account for the changes in the dissolved N2O distribution. Structural equation modeling (SEM), illustrated how the environment significantly influences functional microbial groups (nitrifiers and methane oxidizers) and their resulting effect on GHG distribution. Our results highlight the combined role of salinity and substrates of key functional microbial groups with metabolisms associated with both carbon and nitrogen, influencing dissolved GHG and their potential exchange in natural and anthropogenically impacted coastal wetlands.


Asunto(s)
Alphaproteobacteria , Gases de Efecto Invernadero , Microbiota , Dióxido de Carbono , Chile , Metano , Nitratos , Nitrógeno , Óxido Nitroso , Humedales
3.
Sci Total Environ ; 848: 157485, 2022 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-35870597

RESUMEN

Freshwater ecosystems are important contributors to the global greenhouse gas budget and a comprehensive assessment of their role in the context of global warming is essential. Despite many reports on freshwater ecosystems, relatively little attention has been given so far to those located in the southern hemisphere and our current knowledge is particularly poor regarding the methane cycle in non-perennially glaciated lakes of the maritime Antarctica. We conducted a high-resolution study of the methane and carbon dioxide cycle in a lake of the Fildes Peninsula, King George Island (Lat. 62°S), and a succinct characterization of 10 additional lakes and ponds of the region. The study, done during the ice-free and the ice-seasons, included methane and carbon dioxide exchanges with the atmosphere (both from water and surrounding soils) and the dissolved concentration of these two gases throughout the water column. This characterization was complemented with an ex-situ analysis of the microbial activities involved in the methane cycle, including methanotrophic and methanogenic activities as well as the methane-related marker gene abundance, in water, sediments and surrounding soils. The results showed that, over an annual cycle, the freshwater ecosystems of the region are dominantly autotrophic and that, despite low but omnipresent atmospheric methane emissions, they act as greenhouse gas sinks.


Asunto(s)
Gases de Efecto Invernadero , Lagos , Regiones Antárticas , Dióxido de Carbono/análisis , Ecosistema , Gases/análisis , Gases de Efecto Invernadero/análisis , Lagos/análisis , Metano/análisis , Suelo , Agua/análisis
4.
Environ Int ; 154: 106575, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33901975

RESUMEN

Freshwater ecosystems are responsible for an important part of the methane (CH4) emissions which are likely to change with global warming. This study aims to evaluate temperature-induced (from 5 to 20 °C) changes on microbial community structure and methanogenic pathways in five sub-Antarctic lake sediments from Magallanes strait to Cape Horn, Chile. We combined in situ CH4 flux measurements, CH4 production rates (MPRs), gene abundance quantification and microbial community structure analysis (metabarcoding of the 16S rRNA gene). Under unamended conditions, a temperature increase of 5 °C doubled MPR while microbial community structure was not affected. Stimulation of methanogenesis by methanogenic precursors as acetate and H2/CO2, resulted in an increase of MPRs up to 127-fold and 19-fold, respectively, as well as an enrichment of mcrA-carriers strikingly stronger under acetate amendment. At low temperatures, H2/CO2-derived MPRs were considerably lower (down to 160-fold lower) than the acetate-derived MPRs, but the contribution of hydrogenotrophic methanogenesis increased with temperature. Temperature dependence of MPRs was significantly higher in incubations spiked with H2/CO2 (c. 1.9 eV) compared to incubations spiked with acetate or unamended (c. 0.8 eV). Temperature was not found to shape the total microbial community structure, that rather exhibited a site-specific variability among the studied lakes. However, the methanogenic archaeal community structure was driven by amended methanogenic precursors with a dominance of Methanobacterium in H2/CO2-based incubations and Methanosarcina in acetate-based incubations. We also suggested the importance of acetogenic H2-production outcompeting hydrogenotrohic methanogenesis especially at low temperatures, further supported by homoacetogen proportion in the microcosm communities. The combination of in situ-, and laboratory-based measurements and molecular approaches indicates that the hydrogenotrophic pathway may become more important with increasing temperatures than the acetoclastic pathway. In a continuously warming environment driven by climate change, such issues are crucial and may receive more attention.


Asunto(s)
Agua Dulce , Microbiota , Regiones Antárticas , Chile , ARN Ribosómico 16S/genética , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...