Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genes (Basel) ; 15(4)2024 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-38674352

RESUMEN

Genomic prediction relates a set of markers to variability in observed phenotypes of cultivars and allows for the prediction of phenotypes or breeding values of genotypes on unobserved individuals. Most genomic prediction approaches predict breeding values based solely on additive effects. However, the economic value of wheat lines is not only influenced by their additive component but also encompasses a non-additive part (e.g., additive × additive epistasis interaction). In this study, genomic prediction models were implemented in three target populations of environments (TPE) in South Asia. Four models that incorporate genotype × environment interaction (G × E) and genotype × genotype (GG) were tested: Factor Analytic (FA), FA with genomic relationship matrix (FA + G), FA with epistatic relationship matrix (FA + GG), and FA with both genomic and epistatic relationship matrices (FA + G + GG). Results show that the FA + G and FA + G + GG models displayed the best and a similar performance across all tests, leading us to infer that the FA + G model effectively captures certain epistatic effects. The wheat lines tested in sites in different TPE were predicted with different precisions depending on the cross-validation employed. In general, the best prediction accuracy was obtained when some lines were observed in some sites of particular TPEs and the worse genomic prediction was observed when wheat lines were never observed in any site of one TPE.


Asunto(s)
Epistasis Genética , Interacción Gen-Ambiente , Genoma de Planta , Genómica , Modelos Genéticos , Fitomejoramiento , Triticum , Triticum/genética , Fitomejoramiento/métodos , Genómica/métodos , Genotipo , Fenotipo
2.
Int J Mol Sci ; 24(13)2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37445683

RESUMEN

Genomic prediction combines molecular and phenotypic data in a training population to predict the breeding values of individuals that have only been genotyped. The use of genomic information in breeding programs helps to increase the frequency of favorable alleles in the populations of interest. This study evaluated the performance of BLUP (Best Linear Unbiased Prediction) in predicting resistance to tan spot, spot blotch and Septoria nodorum blotch in synthetic hexaploid wheat. BLUP was implemented in single-trait and multi-trait models with three variations: (1) the pedigree relationship matrix (A-BLUP), (2) the genomic relationship matrix (G-BLUP), and (3) a combination of the two matrices (A+G BLUP). In all three diseases, the A-BLUP model had a lower performance, and the G-BLUP and A+G BLUP were statistically similar (p ≥ 0.05). The prediction accuracy with the single trait was statistically similar (p ≥ 0.05) to the multi-trait accuracy, possibly due to the low correlation of severity between the diseases.


Asunto(s)
Enfermedades de las Plantas , Triticum , Humanos , Triticum/genética , Enfermedades de las Plantas/genética , Fitomejoramiento , Genoma , Genómica , Fenotipo , Genotipo , Modelos Genéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...