Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Drug Dev Ind Pharm ; 41(10): 1632-9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25391332

RESUMEN

Traditional vaginal preparations reside in the vaginal cavity for relatively a short period of time, requiring multiple doses in order to attain the desired therapeutic effect. Therefore, mucoadhesive systems appear to be appropriate to prolong the residence time in the vaginal cavity. In the current study, mucoadhesive nanoparticles based on poly(methyl vinyl ether-co-maleic anhydride) (PVM/MA) intended for vaginal delivery of glycyrrhizic acid (GA) (a drug with well-known antiviral properties) were prepared and characterized. Nanoparticles were generated by a solvent displacement method. Incorporation of GA was performed during nanoprecipitation, followed by adsorption of drug once nanoparticles were formed. The prepared nanoparticles were characterized in terms of size, Z-potential, morphology, drug loading, interaction of GA with PVM/MA (by differential scanning calorimetry) and the in vitro interaction of nanoparticles with pig mucin (at two pH values, 3.6 and 5; with and without GA adsorbed). The preparation method led to nanoparticles of a mean diameter of 198.5 ± 24.3 nm, zeta potential of -44.8 ± 2.8 mV and drug loading of 15.07 ± 0.86 µg/mg polymer. The highest mucin interaction resulted at pH 3.6 for nanoparticles without GA adsorbed. The data obtained suggest the promise of using mucoadhesive nanoparticles of PVM/MA for intravaginal delivery of GA.


Asunto(s)
Antivirales/administración & dosificación , Portadores de Fármacos/química , Ácido Glicirrínico/administración & dosificación , Maleatos/química , Nanopartículas/química , Polietilenos/química , Adhesividad , Administración Intravaginal , Animales , Rastreo Diferencial de Calorimetría , Cromatografía en Capa Delgada , Concentración de Iones de Hidrógeno , Mucinas/metabolismo , Tamaño de la Partícula , Propiedades de Superficie , Porcinos , Tecnología Farmacéutica
2.
Int J Nanomedicine ; 8: 2141-51, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23788833

RESUMEN

A biodegradable polymeric system is proposed for formulating peptides and proteins. The systems were assembled through the adsorption of biodegradable polymeric nanoparticles onto porous, biodegradable microspheres by an adsorption/infiltration process with the use of an immersion method. The peptide drug is not involved in the manufacturing of the nanoparticles or in obtaining the microspheres; thus, contact with the organic solvent, interfaces, and shear forces required for the process are prevented during drug loading. Leuprolide acetate was used as the model peptide, and poly(d,l-lactide-co-glycolide) (PLGA) was used as the biodegradable polymer. Leuprolide was adsorbed onto different amounts of PLGA nanoparticles (25 mg/mL, 50 mg/mL, 75 mg/mL, and 100 mg/mL) in a first stage; then, these were infiltrated into porous PLGA microspheres (100 mg) by dipping the structures into a microsphere suspension. In this way, the leuprolide was adsorbed onto both surfaces (ie, nanoparticles and microspheres). Scanning electron microscopy studies revealed the formation of a nanoparticle film on the porous microsphere surface that becomes more continuous as the amount of infiltrated nanoparticles increases. The adsorption efficiency and release rate are dependent on the amount of adsorbed nanoparticles. As expected, a greater adsorption efficiency (~95%) and a slower release rate were seen (~20% of released leuprolide in 12 hours) when a larger amount of nanoparticles was adsorbed (100 mg/mL of nanoparticles). Leuprolide acetate begins to be released immediately when there are no infiltrated nanoparticles, and 90% of the peptide is released in the first 12 hours. In contrast, the systems assembled in this study released less than 44% of the loaded drug during the same period of time. The observed release profiles denoted a Fickian diffusion that fit Higuchi's model (t(1/2)). The manufacturing process presented here may be useful as a potential alternative for formulating injectable depots for sensitive hydrophilic drugs such as peptides and proteins, among others.


Asunto(s)
Química Farmacéutica/métodos , Preparaciones de Acción Retardada , Ácido Láctico/química , Microesferas , Nanopartículas/química , Ácido Poliglicólico/química , Adsorción , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacocinética , Leuprolida/química , Leuprolida/farmacocinética , Modelos Químicos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Porosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA