Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Cancer Discov ; : OF1-OF24, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38593348

RESUMEN

RAS-driven cancers comprise up to 30% of human cancers. RMC-6236 is a RAS(ON) multi-selective noncovalent inhibitor of the active, GTP-bound state of both mutant and wild-type variants of canonical RAS isoforms with broad therapeutic potential for the aforementioned unmet medical need. RMC-6236 exhibited potent anticancer activity across RAS-addicted cell lines, particularly those harboring mutations at codon 12 of KRAS. Notably, oral administration of RMC-6236 was tolerated in vivo and drove profound tumor regressions across multiple tumor types in a mouse clinical trial with KRASG12X xenograft models. Translational PK/efficacy and PK/PD modeling predicted that daily doses of 100 mg and 300 mg would achieve tumor control and objective responses, respectively, in patients with RAS-driven tumors. Consistent with this, we describe here objective responses in two patients (at 300 mg daily) with advanced KRASG12X lung and pancreatic adenocarcinoma, respectively, demonstrating the initial activity of RMC-6236 in an ongoing phase I/Ib clinical trial (NCT05379985). SIGNIFICANCE: The discovery of RMC-6236 enables the first-ever therapeutic evaluation of targeted and concurrent inhibition of canonical mutant and wild-type RAS-GTP in RAS-driven cancers. We demonstrate that broad-spectrum RAS-GTP inhibition is tolerable at exposures that induce profound tumor regressions in preclinical models of, and in patients with, such tumors.

2.
Nature ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589574

RESUMEN

RAS oncogenes (collectively NRAS, HRAS and especially KRAS) are among the most frequently mutated genes in cancer, with common driver mutations occurring at codons 12, 13 and 611. Small molecule inhibitors of the KRAS(G12C) oncoprotein have demonstrated clinical efficacy in patients with multiple cancer types and have led to regulatory approvals for the treatment of non-small cell lung cancer2,3. Nevertheless, KRASG12C mutations account for only around 15% of KRAS-mutated cancers4,5, and there are no approved KRAS inhibitors for the majority of patients with tumours containing other common KRAS mutations. Here we describe RMC-7977, a reversible, tri-complex RAS inhibitor with broad-spectrum activity for the active state of both mutant and wild-type KRAS, NRAS and HRAS variants (a RAS(ON) multi-selective inhibitor). Preclinically, RMC-7977 demonstrated potent activity against RAS-addicted tumours carrying various RAS genotypes, particularly against cancer models with KRAS codon 12 mutations (KRASG12X). Treatment with RMC-7977 led to tumour regression and was well tolerated in diverse RAS-addicted preclinical cancer models. Additionally, RMC-7977 inhibited the growth of KRASG12C cancer models that are resistant to KRAS(G12C) inhibitors owing to restoration of RAS pathway signalling. Thus, RAS(ON) multi-selective inhibitors can target multiple oncogenic and wild-type RAS isoforms and have the potential to treat a wide range of RAS-addicted cancers with high unmet clinical need. A related RAS(ON) multi-selective inhibitor, RMC-6236, is currently under clinical evaluation in patients with KRAS-mutant solid tumours (ClinicalTrials.gov identifier: NCT05379985).

3.
Cancer Cell ; 42(3): 413-428.e7, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38402609

RESUMEN

KRASG12C inhibitors (adagrasib and sotorasib) have shown clinical promise in targeting KRASG12C-mutated lung cancers; however, most patients eventually develop resistance. In lung patients with adenocarcinoma with KRASG12C and STK11/LKB1 co-mutations, we find an enrichment of the squamous cell carcinoma gene signature in pre-treatment biopsies correlates with a poor response to adagrasib. Studies of Lkb1-deficient KRASG12C and KrasG12D lung cancer mouse models and organoids treated with KRAS inhibitors reveal tumors invoke a lineage plasticity program, adeno-to-squamous transition (AST), that enables resistance to KRAS inhibition. Transcriptomic and epigenomic analyses reveal ΔNp63 drives AST and modulates response to KRAS inhibition. We identify an intermediate high-plastic cell state marked by expression of an AST plasticity signature and Krt6a. Notably, expression of the AST plasticity signature and KRT6A at baseline correlates with poor adagrasib responses. These data indicate the role of AST in KRAS inhibitor resistance and provide predictive biomarkers for KRAS-targeted therapies in lung cancer.


Asunto(s)
Acetonitrilos , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Piperazinas , Pirimidinas , Animales , Ratones , Humanos , Proteínas Proto-Oncogénicas p21(ras) , Genes ras , Mutación
4.
Clin Cancer Res ; 30(8): 1669-1684, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38345769

RESUMEN

PURPOSE: ERBB2-amplified colorectal cancer is a distinct molecular subtype with expanding treatments. Implications of concurrent oncogenic RAS/RAF alterations are not known. EXPERIMENTAL DESIGN: Dana-Farber and Foundation Medicine Inc. Colorectal cancer cohorts with genomic profiling were used to identify ERBB2-amplified cases [Dana-Farber, n = 47/2,729 (1.7%); FMI, n = 1857/49,839 (3.7%)]. Outcomes of patients receiving HER2-directed therapies are reported (Dana-Farber, n = 9; Flatiron Health-Foundation Medicine clinicogenomic database, FH-FMI CGDB, n = 38). Multisite HER2 IHC and genomic profiling were performed to understand HER2 intratumoral and interlesional heterogeneity. The impact of concurrent RAS comutations on the effectiveness of HER2-directed therapies were studied in isogenic colorectal cancer cell lines and xenografts. RESULTS: ERBB2 amplifications are enriched in left-sided colorectal cancer. Twenty percent of ERBB2-amplified colorectal cancers have co-occurring oncogenic RAS/RAF alterations. While RAS/RAF WT colorectal cancers typically have clonal ERBB2 amplification, colorectal cancers with co-occurring RAS/RAF alterations have lower level ERRB2 amplification, higher intratumoral heterogeneity, and interlesional ERBB2 discordance. These distinct genomic patterns lead to differential responsiveness and patterns of resistance to HER2-directed therapy. ERBB2-amplified colorectal cancer with RAS/RAF alterations are resistant to trastuzumab-based combinations, such as trastuzumab/tucatinib, but retain sensitivity to trastuzumab deruxtecan in in vitro and murine models. Trastuzumab deruxtecan shows clinical efficacy in cases with high-level ERBB2-amplified RAS/RAF coaltered colorectal cancer. CONCLUSIONS: Co-occurring RAS/RAF alterations define a unique subtype of ERBB2-amplified colorectal cancer that has increased intratumoral heterogeneity, interlesional discordance, and resistance to trastuzumab-based combinations. Further examination of trastuzumab deruxtecan in this previously understudied cohort of ERBB2-amplified colorectal cancer is warranted.


Asunto(s)
Neoplasias Colorrectales , Variaciones en el Número de Copia de ADN , Humanos , Animales , Ratones , Amplificación de Genes , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Receptor ErbB-2/metabolismo , Trastuzumab/farmacología , Trastuzumab/uso terapéutico , Resultado del Tratamiento , Mutación
5.
Cancer Discov ; 14(5): 727-736, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38236605

RESUMEN

KRASG12C inhibitors, like sotorasib and adagrasib, potently and selectively inhibit KRASG12C through a covalent interaction with the mutant cysteine, driving clinical efficacy in KRASG12C tumors. Because amino acid sequences of the three main RAS isoforms-KRAS, NRAS, and HRAS-are highly similar, we hypothesized that some KRASG12C inhibitors might also target NRASG12C and/or HRASG12C, which are less common but critical oncogenic driver mutations in some tumors. Although some inhibitors, like adagrasib, were highly selective for KRASG12C, others also potently inhibited NRASG12C and/or HRASG12C. Notably, sotorasib was five-fold more potent against NRASG12C compared with KRASG12C or HRASG12C. Structural and reciprocal mutagenesis studies suggested that differences in isoform-specific binding are mediated by a single amino acid: Histidine-95 in KRAS (Leucine-95 in NRAS). A patient with NRASG12C colorectal cancer treated with sotorasib and the anti-EGFR antibody panitumumab achieved a marked tumor response, demonstrating that sotorasib can be clinically effective in NRASG12C-mutated tumors. SIGNIFICANCE: These studies demonstrate that certain KRASG12C inhibitors effectively target all RASG12C mutations and that sotorasib specifically is a potent NRASG12C inhibitor capable of driving clinical responses. These findings have important implications for the treatment of patients with NRASG12C or HRASG12C cancers and could guide design of NRAS or HRAS inhibitors. See related commentary by Seale and Misale, p. 698. This article is featured in Selected Articles from This Issue, p. 695.


Asunto(s)
Proteínas de la Membrana , Proteínas Proto-Oncogénicas p21(ras) , Piridinas , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , GTP Fosfohidrolasas/genética , Mutación , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Pirimidinas/uso terapéutico , Pirimidinas/farmacología , Piperazinas/farmacología , Piperazinas/uso terapéutico
6.
Gut ; 73(4): 639-648, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38123998

RESUMEN

OBJECTIVE: Pancreatic ductal adenocarcinoma (PDAC) is commonly diagnosed at an advanced stage. Liquid biopsy approaches may facilitate detection of early stage PDAC when curative treatments can be employed. DESIGN: To assess circulating marker discrimination in training, testing and validation patient cohorts (total n=426 patients), plasma markers were measured among PDAC cases and patients with chronic pancreatitis, colorectal cancer (CRC), and healthy controls. Using CA19-9 as an anchor marker, measurements were made of two protein markers (TIMP1, LRG1) and cell-free DNA (cfDNA) pancreas-specific methylation at 9 loci encompassing 61 CpG sites. RESULTS: Comparative methylome analysis identified nine loci that were differentially methylated in exocrine pancreas DNA. In the training set (n=124 patients), cfDNA methylation markers distinguished PDAC from healthy and CRC controls. In the testing set of 86 early stage PDAC and 86 matched healthy controls, CA19-9 had an area under the receiver operating characteristic curve (AUC) of 0.88 (95% CI 0.83 to 0.94), which was increased by adding TIMP1 (AUC 0.92; 95% CI 0.88 to 0.96; p=0.06), LRG1 (AUC 0.92; 95% CI 0.88 to 0.96; p=0.02) or exocrine pancreas-specific cfDNA methylation markers at nine loci (AUC 0.92; 95% CI 0.88 to 0.96; p=0.02). In the validation set of 40 early stage PDAC and 40 matched healthy controls, a combined panel including CA19-9, TIMP1 and a 9-loci cfDNA methylation panel had greater discrimination (AUC 0.86, 95% CI 0.77 to 0.95) than CA19-9 alone (AUC 0.82; 95% CI 0.72 to 0.92). CONCLUSION: A combined panel of circulating markers including proteins and methylated cfDNA increased discrimination compared with CA19-9 alone for early stage PDAC.


Asunto(s)
Adenocarcinoma , Carcinoma Ductal Pancreático , Ácidos Nucleicos Libres de Células , Neoplasias Pancreáticas , Humanos , Antígeno CA-19-9 , Biomarcadores de Tumor , Ácidos Nucleicos Libres de Células/metabolismo , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Páncreas/patología , Adenocarcinoma/diagnóstico , Adenocarcinoma/genética , Adenocarcinoma/patología , Metilación de ADN
8.
bioRxiv ; 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38105998

RESUMEN

Broad-spectrum RAS inhibition holds the potential to benefit roughly a quarter of human cancer patients whose tumors are driven by RAS mutations. However, the impact of inhibiting RAS functions in normal tissues is not known. RMC-7977 is a highly selective inhibitor of the active (GTP-bound) forms of KRAS, HRAS, and NRAS, with affinity for both mutant and wild type (WT) variants. As >90% of human pancreatic ductal adenocarcinoma (PDAC) cases are driven by activating mutations in KRAS, we assessed the therapeutic potential of RMC-7977 in a comprehensive range of PDAC models, including human and murine cell lines, human patient-derived organoids, human PDAC explants, subcutaneous and orthotopic cell-line or patient derived xenografts, syngeneic allografts, and genetically engineered mouse models. We observed broad and pronounced anti-tumor activity across these models following direct RAS inhibition at doses and concentrations that were well-tolerated in vivo. Pharmacological analyses revealed divergent responses to RMC-7977 in tumor versus normal tissues. Treated tumors exhibited waves of apoptosis along with sustained proliferative arrest whereas normal tissues underwent only transient decreases in proliferation, with no evidence of apoptosis. Together, these data establish a strong preclinical rationale for the use of broad-spectrum RAS inhibition in the setting of PDAC.

9.
Sci Signal ; 16(816): eadg5289, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38113333

RESUMEN

Cancer-associated mutations in the guanosine triphosphatase (GTPase) RHOA are found at different locations from the mutational hotspots in the structurally and biochemically related RAS. Tyr42-to-Cys (Y42C) and Leu57-to-Val (L57V) substitutions are the two most prevalent RHOA mutations in diffuse gastric cancer (DGC). RHOAY42C exhibits a gain-of-function phenotype and is an oncogenic driver in DGC. Here, we determined how RHOAL57V promotes DGC growth. In mouse gastric organoids with deletion of Cdh1, which encodes the cell adhesion protein E-cadherin, the expression of RHOAL57V, but not of wild-type RHOA, induced an abnormal morphology similar to that of patient-derived DGC organoids. RHOAL57V also exhibited a gain-of-function phenotype and promoted F-actin stress fiber formation and cell migration. RHOAL57V retained interaction with effectors but exhibited impaired RHOA-intrinsic and GAP-catalyzed GTP hydrolysis, which favored formation of the active GTP-bound state. Introduction of missense mutations at KRAS residues analogous to Tyr42 and Leu57 in RHOA did not activate KRAS oncogenic potential, indicating distinct functional effects in otherwise highly related GTPases. Both RHOA mutants stimulated the transcriptional co-activator YAP1 through actin dynamics to promote DGC progression; however, RHOAL57V additionally did so by activating the kinases IGF1R and PAK1, distinct from the FAK-mediated mechanism induced by RHOAY42C. Our results reveal that RHOAL57V and RHOAY42C drive the development of DGC through distinct biochemical and signaling mechanisms.


Asunto(s)
Neoplasias Gástricas , Animales , Humanos , Ratones , Actinas , Guanosina Trifosfato , Quinasas p21 Activadas , Proteínas Proto-Oncogénicas p21(ras) , Receptor IGF Tipo 1 , Proteína de Unión al GTP rhoA/genética , Transducción de Señal , Neoplasias Gástricas/genética
10.
Clin Cancer Res ; 29(24): 5047-5056, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37819936

RESUMEN

PURPOSE: Combining gemcitabine with CHK1 inhibition has shown promise in preclinical models of pancreatic ductal adenocarcinoma (PDAC). Here, we report the findings from a phase I expansion cohort study (NCT02632448) investigating low-dose gemcitabine combined with the CHK1 inhibitor LY2880070 in patients with previously treated advanced PDAC. PATIENTS AND METHODS: Patients with metastatic PDAC were treated with gemcitabine intravenously at 100 mg/m2 on days 1, 8, and 15, and LY2880070 50 mg orally twice daily on days 2-6, 9-13, and 16-20 of each 21-day cycle. Pretreatment tumor biopsies were obtained from each patient for correlative studies and generation of organoid cultures for drug sensitivity testing and biomarker analyses. RESULTS: Eleven patients with PDAC were enrolled in the expansion cohort between August 27, 2020 and July 30, 2021. Four patients (36%) experienced drug-related grade 3 adverse events. No objective radiologic responses were observed, and all patients discontinued the trial by 3.2 months. In contrast to the lack of efficacy observed in patients, organoid cultures derived from biopsies procured from two patients demonstrated strong sensitivity to the gemcitabine/LY2880070 combination and showed treatment-induced upregulation of replication stress and DNA damage biomarkers, including pKAP1, pRPA32, and γH2AX, as well as induction of replication fork instability. CONCLUSIONS: No evidence of clinical activity was observed for combined low-dose gemcitabine and LY2880070 in this treatment-refractory PDAC cohort. However, the gemcitabine/LY2880070 combination showed in vitro efficacy, suggesting that drug sensitivity for this combination in organoid cultures may not predict clinical benefit in patients.


Asunto(s)
Adenocarcinoma , Carcinoma Ductal Pancreático , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Neoplasias Pancreáticas , Humanos , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/genética , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/patología , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/antagonistas & inhibidores , Estudios de Cohortes , Desoxicitidina , Gemcitabina , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Inhibidores de Proteínas Quinasas/efectos adversos , Inhibidores de Proteínas Quinasas/uso terapéutico , Antineoplásicos/efectos adversos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
11.
Clin Cancer Res ; 29(22): 4627-4643, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37463056

RESUMEN

PURPOSE: Approximately 8% to 10% of pancreatic ductal adenocarcinomas (PDAC) do not harbor mutations in KRAS. Understanding the unique molecular and clinical features of this subset of pancreatic cancer is important to guide patient stratification for clinical trials of molecularly targeted agents. EXPERIMENTAL DESIGN: We analyzed a single-institution cohort of 795 exocrine pancreatic cancer cases (including 785 PDAC cases) with a targeted multigene sequencing panel and identified 73 patients (9.2%) with KRAS wild-type (WT) pancreatic cancer. RESULTS: Overall, 43.8% (32/73) of KRAS WT cases had evidence of an alternative driver of the MAPK pathway, including BRAF mutations and in-frame deletions and receptor tyrosine kinase fusions. Conversely, 56.2% of cases did not harbor a clear MAPK driver alteration, but 29.3% of these MAPK-negative KRAS WT cases (12/41) demonstrated activating alterations in other oncogenic drivers, such as GNAS, MYC, PIK3CA, and CTNNB1. We demonstrate potent efficacy of pan-RAF and MEK inhibition in patient-derived organoid models carrying BRAF in-frame deletions. Moreover, we demonstrate durable clinical benefit of targeted therapy in a patient harboring a KRAS WT tumor with a ROS1 fusion. Clinically, patients with KRAS WT tumors were significantly younger in age of onset (median age: 62.6 vs. 65.7 years; P = 0.037). SMAD4 mutations were associated with a particularly poor prognosis in KRAS WT cases. CONCLUSIONS: This study defines the genomic underpinnings of KRAS WT pancreatic cancer and highlights potential therapeutic avenues for future investigation in molecularly directed clinical trials. See related commentary by Kato et al., p. 4527.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Persona de Mediana Edad , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Tirosina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Mutación , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética
12.
Nat Commun ; 14(1): 4317, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37463915

RESUMEN

Patients with pancreatic cancer commonly develop weight loss and muscle wasting. Whether adipose tissue and skeletal muscle losses begin before diagnosis and the potential utility of such losses for earlier cancer detection are not well understood. We quantify skeletal muscle and adipose tissue areas from computed tomography (CT) imaging obtained 2 months to 5 years before cancer diagnosis in 714 pancreatic cancer cases and 1748 matched controls. Adipose tissue loss is identified up to 6 months, and skeletal muscle wasting is identified up to 18 months before the clinical diagnosis of pancreatic cancer and is not present in the matched control population. Tissue losses are of similar magnitude in cases diagnosed with localized compared with metastatic disease and are not correlated with at-diagnosis circulating levels of CA19-9. Skeletal muscle wasting occurs in the 1-2 years before pancreatic cancer diagnosis and may signal an upcoming diagnosis of pancreatic cancer.


Asunto(s)
Composición Corporal , Neoplasias Pancreáticas , Humanos , Tejido Adiposo/metabolismo , Neoplasias Pancreáticas/complicaciones , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/metabolismo , Atrofia Muscular/patología , Músculo Esquelético/metabolismo , Caquexia/diagnóstico , Caquexia/etiología , Caquexia/metabolismo , Neoplasias Pancreáticas
13.
Gastroenterology ; 165(4): 874-890.e10, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37263309

RESUMEN

BACKGROUND & AIMS: Transforming growth factor-b (TGFb) plays pleiotropic roles in pancreatic cancer, including promoting metastasis, attenuating CD8 T-cell activation, and enhancing myofibroblast differentiation and deposition of extracellular matrix. However, single-agent TGFb inhibition has shown limited efficacy against pancreatic cancer in mice or humans. METHODS: We evaluated the TGFß-blocking antibody NIS793 in combination with gemcitabine/nanoparticle (albumin-bound)-paclitaxel or FOLFIRINOX (folinic acid [FOL], 5-fluorouracil [F], irinotecan [IRI] and oxaliplatin [OX]) in orthotopic pancreatic cancer models. Single-cell RNA sequencing and immunofluorescence were used to evaluate changes in tumor cell state and the tumor microenvironment. RESULTS: Blockade of TGFß with chemotherapy reduced tumor burden in poorly immunogenic pancreatic cancer, without affecting the metastatic rate of cancer cells. Efficacy of combination therapy was not dependent on CD8 T cells, because response to TGFß blockade was preserved in CD8-depleted or recombination activating gene 2 (RAG2-/-) mice. TGFß blockade decreased total α-smooth muscle actin-positive fibroblasts but had minimal effect on fibroblast heterogeneity. Bulk RNA sequencing on tumor cells sorted ex vivo revealed that tumor cells treated with TGFß blockade adopted a classical lineage consistent with enhanced chemosensitivity, and immunofluorescence for cleaved caspase 3 confirmed that TGFß blockade increased chemotherapy-induced cell death in vivo. CONCLUSIONS: TGFß regulates pancreatic cancer cell plasticity between classical and basal cell states. TGFß blockade in orthotropic models of pancreatic cancer enhances sensitivity to chemotherapy by promoting a classical malignant cell state. This study provides scientific rationale for evaluation of NIS793 with FOLFIRINOX or gemcitabine/nanoparticle (albumin-bound) paclitaxel chemotherapy backbone in the clinical setting and supports the concept of manipulating cancer cell plasticity to increase the efficacy of combination therapy regimens.


Asunto(s)
Antineoplásicos , Neoplasias Pancreáticas , Humanos , Ratones , Animales , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Factor de Crecimiento Transformador beta/metabolismo , Antineoplásicos/uso terapéutico , Gemcitabina , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Albúminas , Factores de Crecimiento Transformadores/uso terapéutico , Microambiente Tumoral , Neoplasias Pancreáticas
14.
JCO Precis Oncol ; 7: e2200572, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37343200

RESUMEN

PURPOSE: GI cancers commonly spread to the peritoneal cavity, particularly from primary adenocarcinomas of the stomach and appendix. Peritoneal metastases are difficult to visualize on cross-sectional imaging and cause substantial morbidity and mortality. The purpose of this study was to determine whether serial highly sensitive tumor-informed circulating tumor DNA (ctDNA) measurements could longitudinally track changes in disease burden and inform clinical care. METHODS: This was a retrospective case series of patients with gastric or appendiceal adenocarcinoma and isolated peritoneal disease that was radiographically occult. Patients underwent quantitative tumor-informed ctDNA testing (Signatera) as part of routine clinical care. No interventions were prespecified based on ctDNA results. RESULTS: Of 13 patients studied, the median age was 65 (range, 45-75) years, with 7 (54%) women, 5 (38%) patients with gastric, and 8 (62%) patients with appendiceal adenocarcinoma. Eight (62%) patients had detectable ctDNA at baseline measurement, with median value 0.13 MTM/mL (range, 0.06-11.68), and assay was technically unsuccessful in two cases with appendiceal cancer because of limited tumor tissue. Five (100%) patients with gastric cancer and 3 (50%) patients with appendiceal cancer had detectable ctDNA at baseline. Although baseline levels of ctDNA were low, longitudinal assessment tracked with changes in disease burden among patients undergoing chemotherapy for metastatic disease. In two patients undergoing surveillance after definitive surgical management of gastric adenocarcinoma, detection of ctDNA prompted diagnosis of isolated peritoneal disease. CONCLUSION: Quantitative tumor-informed serial ctDNA testing aids clinical management of patients with isolated peritoneal disease. Low levels of baseline ctDNA suggest a role for highly sensitive ctDNA approaches over panel-based testing. Further exploration of this approach should be considered in patients with isolated peritoneal malignant disease.


Asunto(s)
Adenocarcinoma , Neoplasias del Apéndice , ADN Tumoral Circulante , Neoplasias Peritoneales , Neoplasias Gástricas , Humanos , Femenino , Anciano , Masculino , ADN Tumoral Circulante/genética , Neoplasias Peritoneales/diagnóstico , Neoplasias Peritoneales/genética , Estudios Retrospectivos , Biomarcadores de Tumor/genética , ADN de Neoplasias/genética
15.
Nat Cancer ; 4(5): 754-773, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37237081

RESUMEN

Clinical progress in multiple myeloma (MM), an incurable plasma cell (PC) neoplasia, has been driven by therapies that have limited applications beyond MM/PC neoplasias and do not target specific oncogenic mutations in MM. Instead, these agents target pathways critical for PC biology yet largely dispensable for malignant or normal cells of most other lineages. Here we systematically characterized the lineage-preferential molecular dependencies of MM through genome-scale clustered regularly interspaced short palindromic repeats (CRISPR) studies in 19 MM versus hundreds of non-MM lines and identified 116 genes whose disruption more significantly affects MM cell fitness compared with other malignancies. These genes, some known, others not previously linked to MM, encode transcription factors, chromatin modifiers, endoplasmic reticulum components, metabolic regulators or signaling molecules. Most of these genes are not among the top amplified, overexpressed or mutated in MM. Functional genomics approaches thus define new therapeutic targets in MM not readily identifiable by standard genomic, transcriptional or epigenetic profiling analyses.


Asunto(s)
Mieloma Múltiple , Humanos , Mieloma Múltiple/genética , Genómica , Genoma , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética
16.
Chembiochem ; 24(19): e202300141, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37088717

RESUMEN

Focal adhesion kinase (FAK) is an attractive drug target due to its overexpression in cancer. FAK functions as a non-receptor tyrosine kinase and scaffolding protein, coordinating several downstream signaling effectors and cellular processes. While drug discovery efforts have largely focused on targeting FAK kinase activity, FAK inhibitors have failed to show efficacy as single agents in clinical trials. Here, using structure-guided design, we report the development of a selective FAK inhibitor (BSJ-04-175) and degrader (BSJ-04-146) to evaluate the consequences and advantages of abolishing all FAK activity in cancer models. BSJ-04-146 achieves rapid and potent FAK degradation with high proteome-wide specificity in cancer cells and induces durable degradation in mice. Compared to kinase inhibition, targeted degradation of FAK exhibits pronounced improved activity on downstream signaling and cancer cell viability and migration. Together, BSJ-04-175 and BSJ-04-146 are valuable chemical tools to dissect the specific consequences of targeting FAK through small-molecule inhibition or degradation.


Asunto(s)
Neoplasias , Quimera Dirigida a la Proteólisis , Ratones , Animales , Proteína-Tirosina Quinasas de Adhesión Focal/química , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Neoplasias/tratamiento farmacológico , Transducción de Señal , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química
17.
Cell Rep Med ; 4(4): 101007, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37030295

RESUMEN

Pancreatic ductal adenocarcinomas (PDACs) frequently harbor KRAS mutations. Although MEK inhibitors represent a plausible therapeutic option, most PDACs are innately resistant to these agents. Here, we identify a critical adaptive response that mediates resistance. Specifically, we show that MEK inhibitors upregulate the anti-apoptotic protein Mcl-1 by triggering an association with its deubiquitinase, USP9X, resulting in acute Mcl-1 stabilization and protection from apoptosis. Notably, these findings contrast the canonical positive regulation of Mcl-1 by RAS/ERK. We further show that Mcl-1 inhibitors and cyclin-dependent kinase (CDK) inhibitors, which suppress Mcl-1 transcription, prevent this protective response and induce tumor regression when combined with MEK inhibitors. Finally, we identify USP9X as an additional potential therapeutic target. Together, these studies (1) demonstrate that USP9X regulates a critical mechanism of resistance in PDAC, (2) reveal an unexpected mechanism of Mcl-1 regulation in response to RAS pathway suppression, and (3) provide multiple distinct promising therapeutic strategies for this deadly malignancy.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Línea Celular Tumoral , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo
18.
Nat Commun ; 14(1): 1390, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36914658

RESUMEN

Recently developed inhibitors of polymerase theta (POLθ) have demonstrated synthetic lethality in BRCA-deficient tumor models. To examine the contribution of the immune microenvironment to antitumor efficacy, we characterized the effects of POLθ inhibition in immunocompetent models of BRCA1-deficient triple-negative breast cancer (TNBC) or BRCA2-deficient pancreatic ductal adenocarcinoma (PDAC). We demonstrate that genetic POLQ depletion or pharmacological POLθ inhibition induces both innate and adaptive immune responses in these models. POLθ inhibition resulted in increased micronuclei, cGAS/STING pathway activation, type I interferon gene expression, CD8+ T cell infiltration and activation, local paracrine activation of dendritic cells and upregulation of PD-L1 expression. Depletion of CD8+ T cells compromised the efficacy of POLθ inhibition, whereas antitumor effects were augmented in combination with anti-PD-1 immunotherapy. Collectively, our findings demonstrate that POLθ inhibition induces immune responses in a cGAS/STING-dependent manner and provide a rationale for combining POLθ inhibition with immune checkpoint blockade for the treatment of HR-deficient cancers.


Asunto(s)
Carcinoma Ductal Pancreático , ADN Polimerasa Dirigida por ADN , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/metabolismo , Linfocitos T CD8-positivos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa theta
19.
Commun Biol ; 6(1): 163, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36765128

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease for which potent therapies have limited efficacy. Several studies have described the transcriptomic landscape of PDAC tumors to provide insight into potentially actionable gene expression signatures to improve patient outcomes. Despite centralization efforts from multiple organizations and increased transparency requirements from funding agencies and publishers, analysis of public PDAC data remains difficult. Bioinformatic pitfalls litter public transcriptomic data, such as subtle inclusion of low-purity and non-adenocarcinoma cases. These pitfalls can introduce non-specificity to gene signatures without appropriate data curation, which can negatively impact findings. To reduce barriers to analysis, we have created pdacR ( http://pdacR.bmi.stonybrook.edu , github.com/rmoffitt/pdacR), an open-source software package and web-tool with annotated datasets from landmark studies and an interface for user-friendly analysis in clustering, differential expression, survival, and dimensionality reduction. Using this tool, we present a multi-dataset analysis of PDAC transcriptomics that confirms the basal-like/classical model over alternatives.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Pronóstico , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Perfilación de la Expresión Génica , Neoplasias Pancreáticas
20.
Oncologist ; 28(5): 425-432, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-36807743

RESUMEN

BACKGROUND: In preclinical pancreatic ductal adenocarcinoma (PDAC) models, inhibition of hepatocyte growth factor (HGF) signaling using ficlatuzumab, a recombinant humanized anti-HGF antibody, and gemcitabine reduced tumor burden. METHODS: Patients with previously untreated metastatic PDAC enrolled in a phase Ib dose escalation study with 3 + 3 design of 2 dose cohorts of ficlatuzumab 10 and 20 mg/kg administered intravenously every other week with gemcitabine 1000 mg/m2 and albumin-bound paclitaxel 125 mg/m2 given 3 weeks on and 1 week off. This was followed by an expansion phase at the maximally tolerated dose of the combination. RESULTS: Twenty-six patients (sex, 12 male:14 female; median age, 68 years [range, 49-83 years]) were enrolled, 22 patients were evaluable. No dose-limiting toxicities were identified (N = 7 pts) and ficlatuzumab at 20 mg/kg was chosen as the maximum tolerated dose. Among the 21 patients treated at the MTD, best response by RECISTv1.1: 6 (29%) partial response, 12 (57%) stable disease, 1 (5%) progressive disease, and 2 (9%) not evaluable. Median progression-free survival and overall survival times were 11.0 months (95% CI, 7.6-11.4 months) and 16.2 months (95% CI, 9.1 months to not reached), respectively. Toxicities attributed to ficlatuzumab included hypoalbuminemia (grade 3, 16%; any grade, 52%) and edema (grade 3, 8%; any grade, 48%). Immunohistochemistry for c-Met pathway activation demonstrated higher tumor cell p-Met levels in patients who experienced response to therapy. CONCLUSION: In this phase Ib trial, ficlatuzumab, gemcitabine, and albumin-bound paclitaxel were associated with durable treatment responses and increased rates of hypoalbuminemia and edema.


Asunto(s)
Hipoalbuminemia , Neoplasias Pancreáticas , Humanos , Masculino , Femenino , Anciano , Gemcitabina , Paclitaxel Unido a Albúmina , Hipoalbuminemia/inducido químicamente , Paclitaxel/efectos adversos , Neoplasias Pancreáticas/patología , Albúminas/efectos adversos , Edema/etiología , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Neoplasias Pancreáticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...