Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant J ; 96(3): 518-531, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30051514

RESUMEN

A fast callose accumulation has been shown to mediate defence priming in certain plant-pathogen interactions, but the events upstream of callose assembly following chemical priming are poorly understood, mainly because those steps comprise sugar transfer to the infection site. ß-Amino butyric acid (BABA)-induced resistance in Arabidopsis against Plectosphaerella cucumerina is known to be mediated by callose priming. Indole-3-carboxylic acid (ICOOH, also known as I3CA) mediates BABA-induced resistance in Arabidopsis against P. cucumerina. This indolic compound is found in a common fingerprint of primed metabolites following treatments with various priming stimuli. In the present study, we show that I3CA induces resistance in Arabidopsis against P. cucumerina and primes enhancement of callose accumulation. I3CA treatment increased abscisic acid (ABA) levels before infection with P. cucumerina. An intact ABA synthesis pathway is needed to activate a starch amylase (BAM1) to trigger augmented callose deposition against P. cucumerina during I3CA-IR. To verify the relevance of the BAM1 amylase in I3CA-IR, knockdown mutants and overexpressors of the BAM1 gene were tested. The mutant bam1 was impaired to express I3CA-IR, but complemented 35S::BAM1-YFP lines in the background of bam1 restored an intact I3CA-IR and callose priming. Therefore, a more active starch metabolism is a committed step for I3CA-IR, inducing callose priming in adult plants. Additionally, I3CA treatments induced expression of the ubiquitin ligase ATL31 and syntaxin SYP131, suggesting that vesicular trafficking is relevant for callose priming. As a final element in the callose priming, an intact Powdery Mildew resistant4 (PMR4) gene is also essential to fully express I3CA-IR.


Asunto(s)
Arabidopsis/inmunología , Ascomicetos/fisiología , Glucanos/metabolismo , Indoles/metabolismo , Enfermedades de las Plantas/inmunología , Reguladores del Crecimiento de las Plantas/metabolismo , Almidón/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Enfermedades de las Plantas/microbiología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
2.
Int J Mol Sci ; 19(2)2018 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-29466295

RESUMEN

Tetranychus urticae (T. urticae) Koch is a cosmopolitan, polyphagous mite which causes economic losses in both agricultural and ornamental plants. Some traits of T. urticae hamper its management, including a short life cycle, arrhenotokous parthenogenesis, its haplodiploid sex determination system, and its extraordinary ability to adapt to different hosts and environmental conditions. Currently, the use of chemical and biological control are the major control methods used against this mite. In recent years, some studies have focused on plant defence mechanisms against herbivores. Various families of plant compounds (such as flavonoids, glucosinolates, or acyl sugars) have been shown to behave as acaricides. Plants can be induced upon appropriate stimuli to increase their resistance against spider mites. This knowledge, together with the understanding of mechanisms by which T. urticae detoxifies and adapts to pesticides, may complement the control of this pest. Herein, we describe plant volatile compounds (VOCs) with repellent activity, and new findings about defence priming against spider mites, which interfere with the T. urticae performance. The use of VOCs and defence priming can be integrated into current management practices and reduce the damage caused by T. urticae in the field by implementing new, more sustainable crop management tools.


Asunto(s)
Control Biológico de Vectores , Plantas/inmunología , Plantas/parasitología , Tetranychidae/patogenicidad , Animales , Resistencia a la Enfermedad , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/parasitología
3.
J Exp Bot ; 67(19): 5711-5723, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27683726

RESUMEN

Recent research suggests that systemic signalling and communication between roots and leaves plays an important role in plant defence against herbivores. In the present study, we show that the oviposition of the two-spotted spider mite Tetranychus urticae in the systemic leaves of citrus rootstock Citrus aurantium (sour orange) was reduced by 50% when a lower leaf was previously infested with conspecifics. Metabolomic and gene expression analysis of the root efflux revealed a strong accumulation of glutamic acid (Glu) that triggered the expression of the citrus putative glutamate receptor (GRL) in the shoots. Additionally, uninfested sour orange systemic leaves showed increased expression of glutamate receptors and higher amounts of jasmonic acid (JA) and 12-oxo-phytodienoic acid in plants that were previously infested. Glu perception in the shoots induced the JA pathway, which primed LOX-2 gene expression when citrus plants were exposed to a second infestation. The spider mite-susceptible citrus rootstock Cleopatra mandarin (C. unshiu) also expressed systemic resistance, although the resistance was less effective than the resistance in sour orange. Surprisingly, the mobile signal in Cleopatra mandarin was not Glu, which suggests a strong genotype-dependency for systemic signalling in citrus. When the cultivar Clemenules (C. clementina) was grafted onto sour orange, there was a reduction in symptomatic leaves and T. urticae populations compared to the same cultivar grafted onto Cleopatra mandarin. Thus, systemic resistance is transmitted from the roots to the shoots in citrus and is dependent on rootstock resistance.


Asunto(s)
Aminoácidos/fisiología , Citrus/fisiología , Tetranychidae/fisiología , Animales , Citrus/metabolismo , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácido Glutámico/análisis , Ácido Glutámico/fisiología , Herbivoria , Oxilipinas/metabolismo , Reguladores del Crecimiento de las Plantas/fisiología , Hojas de la Planta/química , Hojas de la Planta/fisiología , Raíces de Plantas/fisiología , Brotes de la Planta/metabolismo , Receptores de Glutamato/metabolismo , Receptores de Glutamato/fisiología , Transducción de Señal/fisiología
4.
New Phytol ; 207(3): 790-804, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25771705

RESUMEN

The citrus rootstocks sour orange and Cleopatra mandarin display differential resistance against Tetranychus urticae. Sour orange plants support reduced oviposition, growth rates and damage compared with Cleopatra mandarin plants. Jasmonic acid signalling and flavonoid accumulation have been revealed as key mechanisms for the enhanced resistance of sour orange plants. In this study, we observed that the release of T. urticae herbivore-induced plant volatiles (HIPVs) from sour orange plants has a marked repellent effect on conspecific mites associated with the production of the terpenes α-ocimene, α-farnesene, pinene and d-limonene, and the green leaf volatile 4-hydroxy-4-methyl-2-pentanone. By contrast, T. urticae HIPVs from Cleopatra mandarin plants promote conspecific mite attraction associated with an increase in (2-butoxyethoxy) ethanol, benzaldehyde and methyl salicylate levels. HIPVs released from sour orange plants following T. urticae infestation induce resistance in Cleopatra mandarin plants, thereby reducing oviposition rates and stimulating the oxylipin biosynthetic gene lipoxygenase2 (LOX2). Cleopatra HIPVs do not affect the response to T. urticae of these rootstocks. We conclude that sour orange plants promote herbivore-induced resistance in Cleopatra mandarin plants and, despite the weak basal resistance of these rootstocks, herbivore resistance can be induced through the combination of HIPVs, such as α-ocimene and d-limonene.


Asunto(s)
Citrus/genética , Citrus/parasitología , Repelentes de Insectos/farmacología , Tetranychidae/fisiología , Animales , Cromatografía Líquida de Alta Presión , Citrus/efectos de los fármacos , Ciclopentanos/farmacología , Resistencia a la Enfermedad , Ácidos Grasos Insaturados/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genotipo , Herbivoria/efectos de los fármacos , Metabolómica , Oxilipinas/farmacología , Enfermedades de las Plantas/parasitología , Proteínas de Plantas/metabolismo , Ácido Salicílico/farmacología , Olfato/efectos de los fármacos , Olfato/fisiología , Volatilización
5.
Pest Manag Sci ; 70(11): 1728-41, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24375985

RESUMEN

BACKGROUND: Life history parameters of the phytophagous spider mite Tetranychus urticae in citrus depend on the rootstock where the cultivar is grafted. To unveil the mechanisms responsible for this effect, the authors have carried out comparative experiments of T. urticae performance on two citrus rootstocks, the highly T. urticae-sensitive Cleopatra mandarin and the more tolerant sour orange. RESULTS: Sour orange showed reduced leaf damage symptoms, supported lower mite populations and reduced oviposition rates compared with Cleopatra mandarin. Hormonal, metabolomic and gene expression analyses of the main defence pathways suggest a relevant role of the oxylipin and the flavonoid pathways in the response against T. urticae. Sour orange showed an increased activity of the JA pathway, which was hardly active in the most susceptible rootstock. Moreover, treatments with the LOX inhibitor Phenidone abolished the enhanced tolerance of sour orange. Therefore, oxylipin-dependent defence seems to be rootstock dependent. The metabolomic analysis showed the importance of the flavonoid pathway, which is implicated in the interaction between plants and their environment. CONCLUSION: The findings suggest that sour-orange enhanced tolerance to spider mites can be sustained by a combination of pre-existing and induced responses depending on high levels of flavonoids and a fast and effective activation of the oxylipin pathway. © 2013 Society of Chemical Industry.


Asunto(s)
Citrus/genética , Citrus/metabolismo , Citrus/parasitología , Tetranychidae/fisiología , Aminoácidos , Animales , Flavonoides/metabolismo , Perfilación de la Expresión Génica , Interacciones Huésped-Parásitos , Oviposición/fisiología , Oxilipinas/metabolismo , Hojas de la Planta/química , Hojas de la Planta/parasitología , Reacción en Cadena en Tiempo Real de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...