Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomed Res Int ; 2023: 2848198, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36785668

RESUMEN

Clinical multi-drug-resistant bacteria continue to be a serious health problem. Plant-derived molecules are an important source of bioactive compounds to counteract these pathogenic bacteria. In this paper, we studied the chemical composition of the methanol (80%) extract from Pithecellobium dulce seed (Hail, Saudi Arabia) and its ability to inhibit the growth of clinically relevant multi-drug-resistant bacteria. Molecular docking analysis was performed to predict the best compounds with low binding energy and high affinity to interact with two Staphylococcus aureus receptors. Data showed that P. dulce extract is a rich source of D-turanose (55.82%), hexadecanoic acid (11.56%), indole-1-acetic acid (11.42%), inositol (5.78%), and octadecanoic acid (4.36%). The obtained extract showed antibacterial activity towards tested clinical bacterial strains with MIC values ranging from 233 mg/mL for Acinetobacter baumannii to 300 mg/mL for S. aureus and Escherichia coli. Turanose interaction has resulted in -7.4 and -6.6 kcal/mol for 1JIJ and 2XCT macromolecules, while inositol showed energy values (-7.2 and -5.4 kcal/mol) for the same receptors. Multiple identified compounds showed desirable bioavailability properties indicating its great potential therapeutic use in human. Overall, current investigation highlights the possible use of P. dulce extract as a valuable source for drug development against pathogenic drug-resistant bacteria.


Asunto(s)
Antiinfecciosos , Fabaceae , Humanos , Staphylococcus aureus , Simulación del Acoplamiento Molecular , Pruebas de Sensibilidad Microbiana , Antiinfecciosos/farmacología , Bacterias , Antibacterianos/farmacología , Antibacterianos/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Semillas
2.
Plants (Basel) ; 11(9)2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35567184

RESUMEN

The present study attempted to evaluate and rationalize the medicinal use of the methanolic extract of the fruits of Balanites aegyptiaca (B. aegyptiaca) in the treatment of hyperactive gut disorders. The in vivo, castor oil-induced diarrhea model in mice was followed to test its antidiarrheal effect. To test the antispasmodic effect and to explore its pharmacodynamic details, isolated small intestines (ileum) obtained from rats were selected to provide physiological conditions for the ex vivo assays. In the in vivo assays, the orally administered extract of B. aegyptiaca protected mice from diarrheal drops with resultant percent inhibitions of 40% and 80% at the respective doses of 200 mg/kg and 400 mg/kg, while the highest protection (100%) was observed with a positive control drug, loperamide, at 10 mg/kg. In the ileum, B. aegyptiaca produced an antispasmodic effect in a concentration-dependent manner by inhibiting the carbachol (CCh; 1 µM) and high K+ (80 mM)-evoked spasms with resultant EC50 values of 1.44 mg/mL (1.08-1.78) and 1.27 mg/mL (0.98-1.66), respectively. Papaverine, a known phosphodiesterase enzyme (PDE) inhibitor and blocker of Ca++ channels (CCB), also inhibited both CCh and high K+ induced contractions at comparable EC50 values of 8.72 µM (7.92-9.24) and 8.14 µM (7.62-8.84), respectively. Contrary to the extract and papaverine, verapamil showed distinctly higher potency in regard to inhibiting high K+, compared to CCh-evoked spasms that had EC50 values of 0.16 µM (0.13-0.261) and 2.54 µM (2.28-2.92), respectively. The inhibitory effects of B. aegyptiaca on PDE were further confirmed when the pre-incubated extract shifted the isoprenaline-mediated relaxation curves (CRCs) towards the left, similar to papaverine, whereas the CCB-like effect was confirmed when the pre-incubated tissues with B. aegyptiaca caused deflection in the Ca++ CRCs towards the right, constructed in Ca++ free medium with suppression of the maximum response. Thus, this study provides detailed, mechanistic support for the medicinal use of B. aegyptiaca in the treatment of hyperactive gut disorders.

3.
Molecules ; 27(7)2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35408590

RESUMEN

Garlic's main bioactive organosulfur component, diallyl trisulfide (DATS), has been widely investigated in cancer models. However, DATS is not suitable for clinical use due to its low solubility. The current study seeks to improve DATS bioavailability and assess its chemopreventive and chemosensitizing properties in an AOM-induced colorectal cancer model. The polyethylene glycol coated Distearoylphosphatidylcholine/Cholesterol (DSPC/Chol) comprising DATS-loaded DATSL and doxorubicin (DOXO)-encapsulated DOXL liposomes was prepared and characterized. The changes in the sensitivity of DATS and DOXO by DATSL and DOXL were evaluated in RKO and HT-29 colon cancer cells. The synergistic effect of DATSL and DOXL was studied by cell proliferation assay in the combinations of IC10, IC25, and IC35 of DATSL with the IC10 of DOXL. AOM, DATSL, and DOXL were administered to different groups of mice for a period of 21 weeks. The data exhibited ~93% and ~46% entrapment efficiency of DATSL and DOXL, respectively. The size of sham liposomes was 110.5 nm, whereas DATSL and DOXL were 135.5 nm and 169 nm, respectively. DATSL and DOXL exhibited significant sensitivity in the cell proliferation experiment, lowering their IC50 doses by more than 8- and 14-fold, respectively. However, the DATSL IC10, IC25, and IC35 showed escalating chemosensitivity, and treated the cells in combination with DOXL IC10. Analysis of histopathological, cancer marker enzymes, and antioxidant enzymes revealed that the high dose of DATSL pretreatment and DOXL chemotherapy is highly effective in inhibiting AOM-induced colon cancer promotion. The combination of DATSL and DOXL indicated promise as a colorectal cancer treatment in this study. Intermolecular interactions of DATS and DOXO against numerous cancer targets by molecular docking indicated MMP-9 as the most favourable target for DATS exhibiting binding energy of -4.6 kcal/mol. So far, this is the first research to demonstrate the chemopreventive as well as chemosensitizing potential of DATSL in an animal model of colorectal cancer.


Asunto(s)
Compuestos Alílicos , Neoplasias del Colon , Nanopartículas , Compuestos Alílicos/farmacología , Animales , Apoptosis , Línea Celular Tumoral , Neoplasias del Colon/tratamiento farmacológico , Doxorrubicina/farmacología , Lípidos/farmacología , Liposomas/farmacología , Ratones , Simulación del Acoplamiento Molecular , Sulfuros/farmacología
4.
Pharmaceutics ; 14(2)2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35213970

RESUMEN

Diallyl disulfide (DADS) is one of the main bioactive organosulfur compounds of garlic, and its potential against various cancer models has been demonstrated. The poor solubility of DADS in aqueous solutions limits its uses in clinical application. The present study aimed to develop a novel formulation of DADS to increase its bioavailability and therapeutic potential and evaluate its role in combination with oxaliplatin (OXA) in the colorectal cancer system. We prepared and characterized PEGylated, DADS (DCPDD), and OXA (DCPDO) liposomes. The anticancer potential of these formulations was then evaluated in HCT116 and RKO colon cancer cells by different cellular assays. Further, a molecular docking-based computational analysis was conducted to determine the probable binding interactions of DADS and OXA. The results revealed the size of the DCPDD and DCPDO to be 114.46 nm (95% EE) and 149.45 nm (54% EE), respectively. They increased the sensitivity of the cells and reduced the IC50 several folds, while the combinations of them showed a synergistic effect and induced apoptosis by 55% in the cells. The molecular docking data projected several possible targets of DADS and OXA that could be evaluated more precisely by these novel formulations in detail. This study will direct the usage of DCPDD to augment the therapeutic potential of DCPDO against colon cancer in clinical settings.

5.
Metabolites ; 12(2)2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35208253

RESUMEN

Studies have demonstrated that chronic consumption of abused drugs induces alterations in several proteins that regulate metabolism. For instance, methamphetamine exposure reduces glucose levels. Fatty and amino acid levels were altered in groups exposed to abused drugs. Therefore, in our study, we investigated the serum metabolomic profile of patients diagnosed with cannabis and/or amphetamine use disorders. Blood was obtained from subjects (control, amphetamine, and cannabis). Detection of serum metabolites was performed using gas chromatography. The ratio peak areas for metabolites were analyzed across the three groups. Both cannabis and amphetamine groups showed higher d-erythrotetrafuranose, octadecanoic acid, hexadecenoic acid, trans-9-octadecanoic acid, lactic acid and methyl thio hydantoin metabolites compared with the control group. Moreover, cannabis patients were found to possess higher glycine, 9,12 octadecanoic acid malonic acid, phosphoric acid and prostaglandin F1a than controls. Our analysis showed that the identified metabolic profile of cannabis or amphetamine use disorder patients was different than control group. Our data indicated that chronic exposure to cannabis or amphetamine dysregulated metabolites in the serum. Future studies are warranted to explore the effects of these abused drugs on the metabolic proteins.

6.
Dent J (Basel) ; 10(2)2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35200252

RESUMEN

The aim of this study was to investigate and compare the leaching of four different clear aligner systems (Invisalign®, Eon®, SureSmile®, and Clarity®). Three sets of aligners as obtained from the four manufacturers were cut and immersed in glass vials containing ethanol with different solutions. The first was 100% ethanol, the second was 75% ethanol to 25% water, the third was 50% ethanol to water, the fourth was 25% ethanol to 75% water, and the last was 100% water. The samples were incubated for two weeks at 37 °C. Leached substances were detected by the gas chromatography-mass spectrometry (GC-MS). Eleven different chemical compounds were detected and confirmed. Benzene1,3-bis(1,1-dimethylethyl) was the only compound detected in all four systems at levels of 100% and 75% ethanol. Statistically, insignificant differences were detected among the different systems where leaching was confirmed. Eon® system was the only material to show statistically significant differences when comparing the number of leached substances among the immersion solution concentrations. The four included systems showed variable degrees of leaching. The lowest amount of leached chemicals was observed in relation to the Invisalign® system, while the highest number was found in the Eon® system. None of the included clear aligner systems leached detectable amounts of bisphenol-A (BPA).

7.
Front Pharmacol ; 12: 615228, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33883992

RESUMEN

The genus Thymus is traditionally used for the treatment of hyperactive airways complaints. The purpose of the current study is to investigate the potential tracheal relaxant effect and possible mechanism(s) of the essential oil of Thymus serrulatus (TS Oil) in isolated guinea pig tracheal tissues. The essential oil was obtained from the fresh erial parts of Thymus serrulatus, and its phyto-components were identified by GC-MS analysis. Guinea pig tracheal preparations were used for testing the tracheal relaxant effect of TS Oil with the determination of the mechanism(s) involved in this relaxation. GC-MS findings reveal that terpenes, fragrance constituents, saponins, and higher fatty acids are present in TS Oil. In isolated guinea pig trachea, TS Oil inhibited carbachol (CCh, 1 µM) and K+ (80 mM)-induced contractions in a pattern similar to that of dicyclomine. TS Oil, at 0.3 mg/ml, shifted parallel CCh-curves towards the right, followed by a non-parallel shift at higher concentration (1 mg/ml), thus suppressing maximum response in the same manner as produced by dicyclomine. Pretreatment of tissues with TS Oil (1 and 3 mg/ml) also produced a rightward shift of Ca++ concentration-response curves (CRCs) in the same manner as caused by verapamil. Further, TS Oil at low concentrations (0.3 and 1 mg/ml) shifted isoprenaline-induced inhibitory CRCs towards the left and increased cAMP levels in isolated tracheal homogenates similar to papaverine, a phosphodiesterase (PDE) inhibitor. In the antimicrobial assay performed by the agar well diffusion method, TS Oil was found most active against Candida albicans and Staphylococcus aureus where the zone of inhibition measured was 28 mm. Additionally, there was little difference between standard strains of gram-positive and gram-negative bacteria. However, methicillin-resistant S. aureus (MRSA) showed a small zone of inhibition as compared to standard strains (22 mm). From these results, it can be concluded that the essential oil of T. serrulatus has the potential to produce antimicrobial effects while causing tracheal relaxation mediated possibly by anticholinergic effects, Ca++ channel blockade, and PDE inhibition whereas additional mechanism(s) cannot be ruled out.

8.
Artículo en Inglés | MEDLINE | ID: mdl-33510808

RESUMEN

Dodonaea viscosa is a medicinal plant which is being used to treat various diseases in humans. The available safety data suggest that the plant does not produce any side effects, or toxicity, in tested adult experimental animals. However, the influence of D. viscosa on fetus or embryonic development is largely not known. This study was conducted in order to find out the reproductive toxicity of D. viscosa in experimental animals. Zebrafish embryos were used as the in vivo developmental toxicity animal model. Methanolic crude extract, hexane, chloroform, and butanol fractions were prepared from the leaves of D. viscosa. Zebrafish embryos were exposed to serial dilution of crude extract and other fractions. The crude extract and hexane fraction induced higher level of toxicity in zebrafish embryos as compared to chloroform and butanol fractions. The phenol and flavonoid estimation revealed that crude leaves extract and hexane fractions had lower content of phenol and flavonoid. Two major compounds, phytol and methyl ester, of hexadecanoic acid were identified by gas chromatography and mass spectrophotometry (GC-MS) analysis. More detailed studies are needed to check the toxicity of D. viscosa in pregnant experimental animals; however, the results from this study have shown that D. viscosa possesses reproductive toxicity and its use and doses must be carefully monitored in pregnant patients.

9.
Colloids Surf B Biointerfaces ; 199: 111543, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33360927

RESUMEN

Phytol, a pharmacologically active compound present in Corchorus olitorius leaf exhibit a range of activity including anti-inflammatory, antioxidant, anticancer, hepatoprotective etc. However, phytol is poorly soluble and absorbed through the intestine wall, therefore the aim of this study is to develop liposomal drug delivery of Corchorus olitorius leaf extract with an average particle size below 150 nm and drug loading efficiency of ≥ 85 %. The impact of different process parameters and material attributes were studied on the average particle size and polydispersity of liposomal batches using design of experiment (DoE). Corchorus olitorius leaf extraction was performed using maceration method and characterised using GC-MS. Liposomal batches of Corchorus olitorius leaf extract were characterized using Malvern zetasizer, transmission electron microscopy (TEM) and UV spectroscopy. The in-vivo anti-inflammatory study of the liposomal preparation of phytol was evaluated using a rat model and in-vitro cancer cell line study was performed on AML and Leukamia cell lines. GC-MS study data showed that phytol is present in C. olitorius leaf extract. Process parameters and material attributes perspective processing temperature, buffer pH and drug: lipid ratio is found as major parameters affecting the average particle size and PDI value of liposomes. Liposomes were prepared in the range of 80-250 nm and optimized batches of liposomes showed drug entrapment efficiency of 60-88 %. In-vivo anti-inflammatory study showed significant activity for C. olitorius leaf extract against carrageenan induced paw edema, which is significantly increased while delivered through liposomes. In-vitro cancer cell line study data suggests that liposomal delivery of phytol was more active at lower concentration compared to pure phytol, for specific cell lines.


Asunto(s)
Corchorus , Animales , Antiinflamatorios/farmacología , Liposomas , Fitol , Extractos Vegetales , Ratas
10.
Saudi J Biol Sci ; 27(12): 3727-3734, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33304184

RESUMEN

Recent advances in metabolomics provide tools to investigate human metabolome in order to establish new parameters to study different approaches towards diagnostics, diseases and their treatment. The present study focused on the untargeted identification of metabolites in serum of patients with coronary artery disease who were under treatment at the time of sample collection. AUCs (Area Under the Curves) from different peaks were considered for the analysis and comparison purposes. The metabolome was studied using GC-MS (Gas Chromatography Mass Spectrometry) and the metabolites were identified with NIST (The National Institute of Standards and Technology) and Wiley library matches. A total of 17 metabolites were identified and focused on to compare with the metabolome of healthy individuals. T test analysis found significant differences in alanine, malonic acid, ribitol, D-glucose, mannose (P < 0.001), acetohydroxamic acid, N-carboxyglycine, and aminobutyrate (P < 0.05). Principal Component Analysis of serum metabolites data found three components out of 17 metabolites; RC1 (Acetohydroxamic acid, alanine, D-glucose, malonic acid, mannose, N-carboxy glycine and ribitol), RC2 (Heptadecanoic acid, hexadecanoic acid, octadecanoic acid and Trans-9-octadecanoic acid), RC3 (Aminobutyrate, D-sorbit, gamma lactone, valine, benzene propanoic acid and lactic acid). No correlation was found among the components.

11.
Saudi Pharm J ; 28(11): 1474-1480, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33250655

RESUMEN

Tarchonanthus Camphoratus L. is traditionally known for its various medicinal purposes. In this study, the T. camphoratus essential oil (TCEO) was isolated via steam distillation, and its chemical constituents were determined using GC-MS. The in vitro antiproliferative effects of TCEO on A549, HepG2, MCF-7 cancer cells, and HUVEC non-tumor cells was investigated using an MTT assay. Flow cytometry analysis was conducted to evaluate cell cycle distribution using propidium iodide staining, and cell death mode using Annexin V-FITC/PI assays. The expression of some apoptosis related genes was investigated using qRT-PCR. Major constituents of TCEO included fenchol, borneol, 3-cyclohexene-1-methanol and 3-ethyl-3-methyl. Cell viability test showed that TCEO is highly effective against MCF-7 cells with IC50 12.5 µg/mL. Cell cycle arrest at the G1/S phase, and apoptosis mediation were evident in the presence of TCEO. Gene expression analysis of several pro-apoptotic and anti-apoptotic genes revealed the initiation of apoptosis in TCEO-MCF-7 cells. In conclusion, our study confirms the antiproliferative activity of the T. camphoratus essential oil.

12.
Molecules ; 25(22)2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33233756

RESUMEN

Inflammation is responsible for the development of many diseases that make up a significant cause of death. The purpose of the study was to develop a novel nanophytosomal preparation of epigallocatechin-3-gallate (EGCG) and egg phospholipid complex that has a lower particle size with higher drug loading capability, physical stability and anti-inflammatory activities. The impact of different factors and material characteristics on the average particle size was studied along with the drug loading of phytosome using design of experiment (DoE). The in vivo anti-inflammatory study was evaluated using a rat model to investigate the performance of EGCG nanophytosome. UHPLC results showed that 500 µg of EGCG were present in 1 mL of green tea extract. SEM data exhibited that phytosome (phospholipid-drug complex) was in the nanosize range, which was further evident from TEM data. Malvern Zetasizer data showed that the average particle size of the EGCG nanophytosome was in the range of 100-250 nm. High drug loading (up to 90%) was achieved with optimum addition rate, stirring temperature and phospholipid concentration. Stability study data suggest that no significant changes were observed in average particle size and drug loading of nanophytome. The in vivo anti-inflammatory study indicated a significant anti-inflammatory activity of green tea extract, pure EGCG and its phytosomal preparations (p ≤ 0.001) against acute paw edema.


Asunto(s)
Antiinflamatorios/química , Antiinflamatorios/farmacología , Catequina/análogos & derivados , Nanopartículas/química , Fitoquímicos/química , Antiinflamatorios/administración & dosificación , Catequina/química , Cromatografía Líquida de Alta Presión , Portadores de Fármacos/química , Cromatografía de Gases y Espectrometría de Masas , Tamaño de la Partícula
13.
Eur J Pharmacol ; 882: 173229, 2020 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-32505666

RESUMEN

Sorafenib, a tyrosine kinase inhibitor that is used in the treatment of hepatocellular and renal cell carcinoma, was reported to induce cardiotoxicity. This study aimed to investigate the potential cardioprotective effect of losartan against sorafenib-induced cardiotoxicity in rat. Sorafenib significantly reduced the left ventricular pressure, heart rate dp/dt max & dp/dt min (indexes of myocardial contractility and relaxation; respectively), and prolonged both the systolic and diastolic periods. Coadminstration of losartan significantly reversed the effects of sorafenib on heart rate, dp/dt max and dp/dt min. In addition, there was a tendency for losartan to reverse sorafenib reduction in left ventricular pressure and perfusion pressure but it did not reach statistical significance. A GC-MS non-targeted based metabolites profiling of rat plasma revealed elevated metaboites, including urea and fatty acids levels, associated with sorafenib induced cardiotoxicity. However, only glycine and lactic acid were statistically significant. Interestingly, losartan co-administration with sorafenib restored these changes, and resulted in a significantly reduced glycine, urea and some fatty acids levels namely; Cis-vaccenic acid, oleic acid, stearic acid and undecanoic acid. In addition, based on histology results, losartan coadminitration almost obviated sorafenib-induced changes in cardiac tissues. The study suggests that losartan has the potential to exert a protective effect against sorafenib-induced cardiotoxicity.


Asunto(s)
Antineoplásicos/efectos adversos , Cardiotónicos/uso terapéutico , Cardiotoxicidad/tratamiento farmacológico , Losartán/uso terapéutico , Inhibidores de Proteínas Quinasas/efectos adversos , Sorafenib/efectos adversos , Animales , Cardiotónicos/farmacología , Cardiotoxicidad/sangre , Cardiotoxicidad/metabolismo , Cardiotoxicidad/patología , Corazón/efectos de los fármacos , Corazón/fisiología , Frecuencia Cardíaca/efectos de los fármacos , Losartán/farmacología , Masculino , Metabolómica , Miocardio/metabolismo , Miocardio/patología , Ratas Wistar
14.
Sci Rep ; 10(1): 6938, 2020 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-32332809

RESUMEN

Neurodegenerative diseases (Alzheimer's, Parkinson's etc.) causes brain cell damage leading to dementia. The major restriction remains in delivering drug to the central nervous system is blood brain barrier (BBB). The aim of this study was to develop a liposomal drug delivery system of Aphanamixis polystachya leaf extract for the treatment of neurodegenerative diseases such as Alzheimer's and Parkinson's disease. In this study GC-MS analysis is used to determine major constituents of Aphanamixis polystachya leaf extract. Liposomal batches of Aphanamixis polystachya leaf extract was prepared using design of experiment (DoE) and characterized using Malvern zetasizer, transmission electron microscopy (TEM), and FT-IR. Stability study of blank and leaf extract loaded liposome were performed in gastric media. In-vivo neurobehavioral and anti-inflammatory studies were performed on mice and rat model respectively. GC-MS data showed that major constituents of Aphanamixis polystachya leaf extract are 2-Pentanone, different acids (Octadec-9-enoic acid, 5-Hydroxypipeloic acid etc.), and Beta-Elemene etc. Malvern Zetasizer and TEM data showed that liposome batches of Aphanamixis polystachya leaf extract were in the range of 120 - 180 nm. Interactions between process parameters and material attributes found to have more impact on the average particle size and polydispersity of liposome batches compared to the impact of each parameter in isolation. Stability studies data suggest that blank and leaf extract loaded liposomes were stable at gastric conditions after 4 hours. In-vivo neurobehavioural study data indicated that significant improvement in the memory function, locomotor activity and ambulatory performance of dementia induced mice was observed for the liposomal batches compared to merely A. polystachya leaf extract.


Asunto(s)
Conducta Animal/efectos de los fármacos , Encéfalo/fisiología , Sistemas de Liberación de Medicamentos , Meliaceae/química , Extractos Vegetales/farmacología , Hojas de la Planta/química , Animales , Antiinflamatorios/farmacología , Femenino , Cromatografía de Gases y Espectrometría de Masas , Liposomas/ultraestructura , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Modelos Animales , Tamaño de la Partícula , Ratas Long-Evans , Espectroscopía Infrarroja por Transformada de Fourier
15.
Saudi Pharm J ; 28(3): 281-289, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32194329

RESUMEN

Otostegia fruticosa, a plant belonging to the family Lamiaceae, is endemic to Ethiopia. In Ethiopian traditional medicine, O. fruticosa has been used for the treatment of several respiratory-related disorders. The present study was designed to evaluate the bronchodilatory and antimicrobial activities of O. fruticosa leaves crude extract (Of.Cr). Ex-vivo experiments were conducted on guinea-pig trachea provided with physiological oxygenated buffer solution using emkaBath setup. The crude extract was analyzed by gas chromatography-mass spectrometry. Of.Cr, showed the presence of terpenes, fragrance components, saponins, and higher fatty acids. Of.Cr when tested on contracted tracheal chains with carbamylcholine (CCh, 1 µM) and high K+ (80 mM) produced relaxation by showing higher potency against CCh with incomplete inhibition of high K+. Dicyclomine, used as a positive control, also showed selectively higher potency to inhibit CCh when compared with its effect against K+. In the anticholinergic curves, Of.Cr at 1 mg/mL deflected CCh-induced concentration-response curves (CRCs) competitively to the right like dicyclomine (0.03 µM) and atropine whereas a higher dose of Of.Cr (3 mg/mL) produced a non-parallel shift in the CCh curves like a higher dose of dicyclomine (0.1 µM). In the calcium channel inhibitory assay, Of.Cr at 3 & 5 mg/mL, deflected CRCs of Ca++ to the right like verapamil, used as positive control. Of.Cr, at concentrations (1-3 mg/mL) increases cAMP levels in isolated tracheal homogenates, similar to positive control phosphodiesterase inhibitor (papaverine). When tested for antibacterial activity against standard and clinical strains, Of.Cr was found more active (MIC 475 µg/ml) against S. aureus (NCTC 6571), while the maximum inhibition (MIC 625 µg/ml) was observed by the extract when tested against MRSA. These results determine the mechanistic pathways of the observed bronchodilatory effect of Otostegia fruticosa with a combination of anticholinergic and dual inhibition of phosphodiesterase and voltage-gated Ca++ channels.

16.
Trop Anim Health Prod ; 51(8): 2447-2454, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31197724

RESUMEN

The objective of present study was to determine metabolite profile and inorganic elements of camel follicular fluids (FF) using "gas chromatography-mass spectrometry (GC-MS) and inductively coupled plasma mass spectrometry (ICP-MS)," respectively. Various metabolites were detected in camel FF by the proposed GC-MS technique. The major compounds detected were lactic acid (62.37%), linolenic acid (5.95%), myo-inositol (3.37%), hexadecanoic acid (3.19%), N-ethyl-N-vinylacetamide (3.15%), acetamide (2.89%), tetradecanoic acid (2.64%), and D-xylofuranose (2.25%). The proposed ICP-MS technique was validated in terms of linearity, precision, accuracy, and sensitivity. All quality control validation parameters were found to be satisfactory for the analysis of elements in camel FF. The proposed ICP-MS technique showed the presence of sixteen different elements (out of eighteen standards) in camel FF. Some elements such as Na, K, Ca, and Mg were obtained in higher amounts in camel FF. Overall, the results of this study indicated that the proposed GC-MS and ICP-MS techniques can be successfully applied for metabolite profile and element determination of biological fluids such as FF.


Asunto(s)
Camelus/metabolismo , Líquido Folicular/metabolismo , Animales , Femenino , Líquido Folicular/química , Cromatografía de Gases y Espectrometría de Masas
17.
J Food Sci Technol ; 56(5): 2395-2403, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31168122

RESUMEN

In the present study, various phytoconstituents of methanolic extract of Foeniculum vulgare were identified using gas-chromatography mass spectrometry (GC-MS) method. GC-MS method was also applied for the analysis of biomarker fenchone in extract and eight different commercial formulations. The mass of prepared extract and formulations A-D and H (commercial herbal mixtures and commercial extract) used for the analysis of fenchone was 10 g. However, the mass of formulations E-G (soft gelatin capsules) was 100 mg. Fifty seven different phytoconstituents were identified in the methanolic extract of F. vulgare using GC-MS technique. The main compounds identified were trans-anethole (31.49%), 2-pentanone (25.01%), fenchone (11.68%) and benzaldehyde-4-methoxy (8.01%). Several other compounds were also identified in higher amounts and some compounds were identified in trace amounts. Many compounds have been reported for the first time in the methanolic extract of F. vulgare. The amount of fenchone was found to be maximum in plant extract (9.789 mg/g) in comparison with other commercial formulations by the proposed GC-MS technique. In three different commercial formulations (F, G and H), the amount of fenchone was obtained as more than 1.0 mg/g. However, in five different commercial formulations (A, B, C, D and E), the amount of fenchone was recorded as less than 0.1 mg/g. This method could be utilized for the analysis of fenchone contents in the commercial formulations containing fenchone as an active ingredient. The results obtained in this work could be useful in standardization of commercial formulations containing fenchone.

18.
Saudi Pharm J ; 25(5): 788-794, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28725152

RESUMEN

The aim of the present investigation was to explore the constituents of the Arabian myrrh resin obtained from Commiphora myrrha. The organic and inorganic composition of the myrrh gum resin has been investigated using gas chromatography-mass spectrometry (GC-MS) and inductively coupled plasma-mass spectrometry (ICP-MS). Analysis executed by ICP-MS reveals the presence of various inorganic elements in significant amount in the myrrh resin. The elements that were found to be present in large amounts include calcium, magnesium, aluminum, phosphorus, chlorine, chromium, bromine and scandium. The important organic constituents identified in the myrrh ethanolic extract include limonene, curzerene, germacrene B, isocericenine, myrcenol, beta selinene, and spathulenol,. The present work complements other myrrh associated investigations done in the past and provides additional data for the future researches.

19.
Saudi J Biol Sci ; 24(1): 23-29, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28053567

RESUMEN

Recent studies from the author's laboratory indicated that camel urine possesses antiplatelet activity and anti-cancer activity which is not present in bovine urine. The objective of this study is to compare the volatile and elemental components of bovine and camel urine using GC-MS and ICP-MS analysis. We are interested to know the component that performs these biological activities. The freeze dried urine was dissolved in dichloromethane and then derivatization process followed by using BSTFA for GC-MS analysis. Thirty different compounds were analyzed by the derivatization process in full scan mode. For ICP-MS analysis twenty eight important elements were analyzed in both bovine and camel urine. The results of GC-MS and ICP-MS analysis showed marked difference in the urinary metabolites. GC-MS evaluation of camel urine finds a lot of products of metabolism like benzene propanoic acid derivatives, fatty acid derivatives, amino acid derivatives, sugars, prostaglandins and canavanine. Several research reports reveal the metabolomics studies on camel urine but none of them completely reported the pharmacology related metabolomics. The present data of GC-MS suggest and support the previous studies and activities related to camel urine.

20.
Biol Trace Elem Res ; 175(2): 322-330, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27286716

RESUMEN

None of the research reports reveals the metabolomics and elemental studies on camel milk. Recent studies showed that camel milk possesses anticancer and anti-inflammatory activity. Metabolomics and elemental studies were carried out in camel milk which showed us the pathways and composition that are responsible for the key biological role of camel milk. Camel milk was dissolved in methanol and chloroform fraction and then vortexed and centrifuged. Both the fractions were derivatized by N,O-bis-(trimethylsilyl)trifluoroacetamide (BSTFA) and TMCS after nitrogen purging and analyzed by GC-MS. Camel milk was also analyzed by ICP-MS after microwave digestion. We found that higher alkanes and fatty acids are present in the chloroform fraction and amino acids, sugars and fatty acid derivatives are present in aqueous fractions. All the heavy metals like As, Pb, Cd, Co, Cu, and Ni were in the safe limits in terms of maximum daily intake of these elements. Na, K, Mg, and Ca were also present in the safe limits in terms of maximum daily intake of these elements. These results suggested that the camel milk drinking is safe and there is no health hazard. The present data of GC-MS and ICP-MS correlate the activities related to camel milk.


Asunto(s)
Metabolómica , Metales Pesados/análisis , Leche/química , Animales , Camelus , Femenino , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...