Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(13): 131002, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38613275

RESUMEN

We present the measurements of all-particle energy spectrum and mean logarithmic mass of cosmic rays in the energy range of 0.3-30 PeV using data collected from LHAASO-KM2A between September 2021 and December 2022, which is based on a nearly composition-independent energy reconstruction method, achieving unprecedented accuracy. Our analysis reveals the position of the knee at 3.67±0.05±0.15 PeV. Below the knee, the spectral index is found to be -2.7413±0.0004±0.0050, while above the knee, it is -3.128±0.005±0.027, with the sharpness of the transition measured with a statistical error of 2%. The mean logarithmic mass of cosmic rays is almost heavier than helium in the whole measured energy range. It decreases from 1.7 at 0.3 PeV to 1.3 at 3 PeV, representing a 24% decline following a power law with an index of -0.1200±0.0003±0.0341. This is equivalent to an increase in abundance of light components. Above the knee, the mean logarithmic mass exhibits a power law trend towards heavier components, which is reversal to the behavior observed in the all-particle energy spectrum. Additionally, the knee position and the change in power-law index are approximately the same. These findings suggest that the knee observed in the all-particle spectrum corresponds to the knee of the light component, rather than the medium-heavy components.

2.
Science ; 383(6681): 402-406, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38271522

RESUMEN

SS 433 is a microquasar, a stellar binary system that launches collimated relativistic jets. We observed SS 433 in gamma rays using the High Energy Stereoscopic System (H.E.S.S.) and found an energy-dependent shift in the apparent position of the gamma-ray emission from the parsec-scale jets. These observations trace the energetic electron population and indicate that inverse Compton scattering is the emission mechanism of the gamma rays. Our modeling of the energy-dependent gamma-ray morphology constrains the location of particle acceleration and requires an abrupt deceleration of the jet flow. We infer the presence of shocks on either side of the binary system, at distances of 25 to 30 parsecs, and that self-collimation of the precessing jets forms the shocks, which then efficiently accelerate electrons.

3.
Phys Rev Lett ; 131(15): 151001, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37897763

RESUMEN

The diffuse Galactic γ-ray emission, mainly produced via interactions between cosmic rays and the interstellar medium and/or radiation field, is a very important probe of the distribution, propagation, and interaction of cosmic rays in the Milky Way. In this Letter, we report the measurements of diffuse γ rays from the Galactic plane between 10 TeV and 1 PeV energies, with the square kilometer array of the Large High Altitude Air Shower Observatory (LHAASO). Diffuse emissions from the inner (15°10 TeV). The energy spectrum in the inner Galaxy regions can be described by a power-law function with an index of -2.99±0.04, which is different from the curved spectrum as expected from hadronic interactions between locally measured cosmic rays and the line-of-sight integrated gas content. Furthermore, the measured flux is higher by a factor of ∼3 than the prediction. A similar spectrum with an index of -2.99±0.07 is found in the outer Galaxy region, and the absolute flux for 10≲E≲60 TeV is again higher than the prediction for hadronic cosmic ray interactions. The latitude distributions of the diffuse emission are consistent with the gas distribution, while the longitude distributions show clear deviation from the gas distribution. The LHAASO measurements imply that either additional emission sources exist or cosmic ray intensities have spatial variations.

4.
Science ; 380(6652): 1390-1396, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37289911

RESUMEN

Some gamma-ray bursts (GRBs) have a tera-electron volt (TeV) afterglow, but the early onset of this has not been observed. We report observations with the Large High Altitude Air Shower Observatory (LHAASO) of the bright GRB 221009A, which serendipitously occurred within the instrument's field of view. More than 64,000 photons >0.2 TeV were detected within the first 3000 seconds. The TeV flux began several minutes after the GRB trigger and then rose to a peak ~10 seconds later. This was followed by a decay phase, which became more rapid ~650 seconds after the peak. We interpret the emission using a model of a relativistic jet with half-opening angle of ~0.8°. This is consistent with the core of a structured jet and could explain the high isotropic energy of this GRB.

5.
Phys Rev Lett ; 129(11): 111101, 2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36154418

RESUMEN

The central region of the Milky Way is one of the foremost locations to look for dark matter (DM) signatures. We report the first results on a search for DM particle annihilation signals using new observations from an unprecedented γ-ray survey of the Galactic Center (GC) region, i.e., the Inner Galaxy Survey, at very high energies (≳100 GeV) performed with the H.E.S.S. array of five ground-based Cherenkov telescopes. No significant γ-ray excess is found in the search region of the 2014-2020 dataset and a profile likelihood ratio analysis is carried out to set exclusion limits on the annihilation cross section ⟨σv⟩. Assuming Einasto and Navarro-Frenk-White (NFW) DM density profiles at the GC, these constraints are the strongest obtained so far in the TeV DM mass range. For the Einasto profile, the constraints reach ⟨σv⟩ values of 3.7×10^{-26} cm^{3} s^{-1} for 1.5 TeV DM mass in the W^{+}W^{-} annihilation channel, and 1.2×10^{-26} cm^{3} s^{-1} for 0.7 TeV DM mass in the τ^{+}τ^{-} annihilation channel. With the H.E.S.S. Inner Galaxy Survey, ground-based γ-ray observations thus probe ⟨σv⟩ values expected from thermal-relic annihilating TeV DM particles.

6.
Science ; 376(6588): 77-80, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35271303

RESUMEN

Recurrent novae are repeating thermonuclear explosions in the outer layers of white dwarfs, due to the accretion of fresh material from a binary companion. The shock generated when ejected material slams into the companion star's wind can accelerate particles. We report very-high-energy (VHE; [Formula: see text]) gamma rays from the recurrent nova RS Ophiuchi, up to 1 month after its 2021 outburst, observed using the High Energy Stereoscopic System (H.E.S.S.). The temporal profile of VHE emission is similar to that of lower-energy giga-electron volt emission, indicating a common origin, with a 2-day delay in peak flux. These observations constrain models of time-dependent particle energization, favoring a hadronic emission scenario over the leptonic alternative. Shocks in dense winds provide favorable environments for efficient acceleration of cosmic rays to very high energies.

7.
Phys Rev Lett ; 128(5): 051102, 2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35179919

RESUMEN

Recently, the LHAASO Collaboration published the detection of 12 ultrahigh-energy γ-ray sources above 100 TeV, with the highest energy photon reaching 1.4 PeV. The first detection of PeV γ rays from astrophysical sources may provide a very sensitive probe of the effect of the Lorentz invariance violation (LIV), which results in decay of high-energy γ rays in the superluminal scenario and hence a sharp cutoff of the energy spectrum. Two highest energy sources are studied in this work. No signature of the existence of the LIV is found in their energy spectra, and the lower limits on the LIV energy scale are derived. Our results show that the first-order LIV energy scale should be higher than about 10^{5} times the Planck scale M_{Pl} and that the second-order LIV scale is >10^{-3}M_{Pl}. Both limits improve by at least one order of magnitude the previous results.

8.
Phys Rev Lett ; 129(26): 261103, 2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36608208

RESUMEN

The kilometer square array (KM2A) of the large high altitude air shower observatory (LHAASO) aims at surveying the northern γ-ray sky at energies above 10 TeV with unprecedented sensitivity. γ-ray observations have long been one of the most powerful tools for dark matter searches, as, e.g., high-energy γ rays could be produced by the decays of heavy dark matter particles. In this Letter, we present the first dark matter analysis with LHAASO-KM2A, using the first 340 days of data from 1/2-KM2A and 230 days of data from 3/4-KM2A. Several regions of interest are used to search for a signal and account for the residual cosmic-ray background after γ/hadron separation. We find no excess of dark matter signals, and thus place some of the strongest γ-ray constraints on the lifetime of heavy dark matter particles with mass between 10^{5} and 10^{9} GeV. Our results with LHAASO are robust, and have important implications for dark matter interpretations of the diffuse astrophysical high-energy neutrino emission.

9.
Science ; 373(6553): 425-430, 2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-34261813

RESUMEN

The Crab Nebula is a bright source of gamma rays powered by the Crab Pulsar's rotational energy through the formation and termination of a relativistic electron-positron wind. We report the detection of gamma rays from this source with energies from 5 × 10-4 to 1.1 peta-electron volts with a spectrum showing gradual steepening over three energy decades. The ultrahigh-energy photons imply the presence of a peta-electron volt electron accelerator (a pevatron) in the nebula, with an acceleration rate exceeding 15% of the theoretical limit. We constrain the pevatron's size between 0.025 and 0.1 parsecs and the magnetic field to ≈110 microgauss. The production rate of peta-electron volt electrons, 2.5 × 1036 ergs per second, constitutes 0.5% of the pulsar spin-down luminosity, although we cannot exclude a contribution of peta-electron volt protons to the production of the highest-energy gamma rays.

10.
Phys Rev Lett ; 126(24): 241103, 2021 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-34213924

RESUMEN

We report the discovery of an extended very-high-energy (VHE) gamma-ray source around the location of the middle-aged (207.8 kyr) pulsar PSR J0622+3749 with the Large High-Altitude Air Shower Observatory (LHAASO). The source is detected with a significance of 8.2σ for E>25 TeV assuming a Gaussian template. The best-fit location is (right ascension, declination) =(95.47°±0.11°,37.92°±0.09°), and the extension is 0.40°±0.07°. The energy spectrum can be described by a power-law spectrum with an index of -2.92±0.17_{stat}±0.02_{sys}. No clear extended multiwavelength counterpart of the LHAASO source has been found from the radio to sub-TeV bands. The LHAASO observations are consistent with the scenario that VHE electrons escaped from the pulsar, diffused in the interstellar medium, and scattered the interstellar radiation field. If interpreted as the pulsar halo scenario, the diffusion coefficient, inferred for electrons with median energies of ∼160 TeV, is consistent with those obtained from the extended halos around Geminga and Monogem and much smaller than that derived from cosmic ray secondaries. The LHAASO discovery of this source thus likely enriches the class of so-called pulsar halos and confirms that high-energy particles generally diffuse very slowly in the disturbed medium around pulsars.

11.
Science ; 372(6546): 1081-1085, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-34083487

RESUMEN

Gamma-ray bursts (GRBs), which are bright flashes of gamma rays from extragalactic sources followed by fading afterglow emission, are associated with stellar core collapse events. We report the detection of very-high-energy (VHE) gamma rays from the afterglow of GRB 190829A, between 4 and 56 hours after the trigger, using the High Energy Stereoscopic System (H.E.S.S.). The low luminosity and redshift of GRB 190829A reduce both internal and external absorption, allowing determination of its intrinsic energy spectrum. Between energies of 0.18 and 3.3 tera-electron volts, this spectrum is described by a power law with photon index of 2.07 ± 0.09, similar to the x-ray spectrum. The x-ray and VHE gamma-ray light curves also show similar decay profiles. These similar characteristics in the x-ray and gamma-ray bands challenge GRB afterglow emission scenarios.

12.
Nature ; 594(7861): 33-36, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34002091

RESUMEN

The extension of the cosmic-ray spectrum beyond 1 petaelectronvolt (PeV; 1015 electronvolts) indicates the existence of the so-called PeVatrons-cosmic-ray factories that accelerate particles to PeV energies. We need to locate and identify such objects to find the origin of Galactic cosmic rays1. The principal signature of both electron and proton PeVatrons is ultrahigh-energy (exceeding 100 TeV) γ radiation. Evidence of the presence of a proton PeVatron has been found in the Galactic Centre, according to the detection of a hard-spectrum radiation extending to 0.04 PeV (ref. 2). Although γ-rays with energies slightly higher than 0.1 PeV have been reported from a few objects in the Galactic plane3-6, unbiased identification and in-depth exploration of PeVatrons requires detection of γ-rays with energies well above 0.1 PeV. Here we report the detection of more than 530 photons at energies above 100 teraelectronvolts and up to 1.4 PeV from 12 ultrahigh-energy γ-ray sources with a statistical significance greater than seven standard deviations. Despite having several potential counterparts in their proximity, including pulsar wind nebulae, supernova remnants and star-forming regions, the PeVatrons responsible for the ultrahigh-energy γ-rays have not yet been firmly localized and identified (except for the Crab Nebula), leaving open the origin of these extreme accelerators.

13.
Nature ; 575(7783): 464-467, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31748724

RESUMEN

Gamma-ray bursts (GRBs) are brief flashes of γ-rays and are considered to be the most energetic explosive phenomena in the Universe1. The emission from GRBs comprises a short (typically tens of seconds) and bright prompt emission, followed by a much longer afterglow phase. During the afterglow phase, the shocked outflow-produced by the interaction between the ejected matter and the circumburst medium-slows down, and a gradual decrease in brightness is observed2. GRBs typically emit most of their energy via γ-rays with energies in the kiloelectronvolt-to-megaelectronvolt range, but a few photons with energies of tens of gigaelectronvolts have been detected by space-based instruments3. However, the origins of such high-energy (above one gigaelectronvolt) photons and the presence of very-high-energy (more than 100 gigaelectronvolts) emission have remained elusive4. Here we report observations of very-high-energy emission in the bright GRB 180720B deep in the GRB afterglow-ten hours after the end of the prompt emission phase, when the X-ray flux had already decayed by four orders of magnitude. Two possible explanations exist for the observed radiation: inverse Compton emission and synchrotron emission of ultrarelativistic electrons. Our observations show that the energy fluxes in the X-ray and γ-ray range and their photon indices remain comparable to each other throughout the afterglow. This discovery places distinct constraints on the GRB environment for both emission mechanisms, with the inverse Compton explanation alleviating the particle energy requirements for the emission observed at late times. The late timing of this detection has consequences for the future observations of GRBs at the highest energies.

14.
Phys Rev Lett ; 120(20): 201101, 2018 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-29864326

RESUMEN

Spectral lines are among the most powerful signatures for dark matter (DM) annihilation searches in very-high-energy γ rays. The central region of the Milky Way halo is one of the most promising targets given its large amount of DM and proximity to Earth. We report on a search for a monoenergetic spectral line from self-annihilations of DM particles in the energy range from 300 GeV to 70 TeV using a two-dimensional maximum likelihood method taking advantage of both the spectral and spatial features of the signal versus background. The analysis makes use of Galactic center observations accumulated over ten years (2004-2014) with the H.E.S.S. array of ground-based Cherenkov telescopes. No significant γ-ray excess above the background is found. We derive upper limits on the annihilation cross section ⟨σv⟩ for monoenergetic DM lines at the level of 4×10^{-28} cm^{3} s^{-1} at 1 TeV, assuming an Einasto DM profile for the Milky Way halo. For a DM mass of 1 TeV, they improve over the previous ones by a factor of 6. The present constraints are the strongest obtained so far for DM particles in the mass range 300 GeV-70 TeV. Ground-based γ-ray observations have reached sufficient sensitivity to explore relevant velocity-averaged cross sections for DM annihilation into two γ-ray photons at the level expected from the thermal relic density for TeV DM particles.

15.
Phys Rev Lett ; 117(15): 151302, 2016 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-27768338

RESUMEN

A search for dark matter linelike signals iss performed in the vicinity of the Galactic Center by the H.E.S.S. experiment on observational data taken in 2014. An unbinned likelihood analysis iss developed to improve the sensitivity to linelike signals. The upgraded analysis along with newer data extend the energy coverage of the previous measurement down to 100 GeV. The 18 h of data collected with the H.E.S.S. array allow one to rule out at 95% C.L. the presence of a 130 GeV line (at l=-1.5°, b=0° and for a dark matter profile centered at this location) previously reported in Fermi-LAT data. This new analysis overlaps significantly in energy with previous Fermi-LAT and H.E.S.S. RESULTS: No significant excess associated with dark matter annihilations was found in the energy range of 100 GeV to 2 TeV and upper limits on the gamma-ray flux and the velocity weighted annihilation cross section are derived adopting an Einasto dark matter halo profile. Expected limits for present and future large statistics H.E.S.S. observations are also given.

16.
Phys Rev Lett ; 117(11): 111301, 2016 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-27661677

RESUMEN

The inner region of the Milky Way halo harbors a large amount of dark matter (DM). Given its proximity, it is one of the most promising targets to look for DM. We report on a search for the annihilations of DM particles using γ-ray observations towards the inner 300 pc of the Milky Way, with the H.E.S.S. array of ground-based Cherenkov telescopes. The analysis is based on a 2D maximum likelihood method using Galactic Center (GC) data accumulated by H.E.S.S. over the last 10 years (2004-2014), and does not show any significant γ-ray signal above background. Assuming Einasto and Navarro-Frenk-White DM density profiles at the GC, we derive upper limits on the annihilation cross section ⟨σv⟩. These constraints are the strongest obtained so far in the TeV DM mass range and improve upon previous limits by a factor 5. For the Einasto profile, the constraints reach ⟨σv⟩ values of 6×10^{-26} cm^{3} s^{-1} in the W^{+}W^{-} channel for a DM particle mass of 1.5 TeV, and 2×10^{-26} cm^{3} s^{-1} in the τ^{+}τ^{-} channel for a 1 TeV mass. For the first time, ground-based γ-ray observations have reached sufficient sensitivity to probe ⟨σv⟩ values expected from the thermal relic density for TeV DM particles.

17.
Phys Rev Lett ; 114(8): 081301, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25768750

RESUMEN

An annihilation signal of dark matter is searched for from the central region of the Milky Way. Data acquired in dedicated on-off observations of the Galactic center region with H.E.S.S. are analyzed for this purpose. No significant signal is found in a total of ∼9 h of on-off observations. Upper limits on the velocity averaged cross section, ⟨σv⟩, for the annihilation of dark matter particles with masses in the range of ∼300 GeV to ∼10 TeV are derived. In contrast to previous constraints derived from observations of the Galactic center region, the constraints that are derived here apply also under the assumption of a central core of constant dark matter density around the center of the Galaxy. Values of ⟨σv⟩ that are larger than 3×10^{-24} cm^{3}/s are excluded for dark matter particles with masses between ∼1 and ∼4 TeV at 95% C.L. if the radius of the central dark matter density core does not exceed 500 pc. This is the strongest constraint that is derived on ⟨σv⟩ for annihilating TeV mass dark matter without the assumption of a centrally cusped dark matter density distribution in the search region.

18.
Phys Rev Lett ; 110(4): 041301, 2013 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-25166149

RESUMEN

Gamma-ray line signatures can be expected in the very-high-energy (E(γ)>100 GeV) domain due to self-annihilation or decay of dark matter (DM) particles in space. Such a signal would be readily distinguishable from astrophysical γ-ray sources that in most cases produce continuous spectra that span over several orders of magnitude in energy. Using data collected with the H.E.S.S. γ-ray instrument, upper limits on linelike emission are obtained in the energy range between ∼ 500 GeV and ∼ 25 TeV for the central part of the Milky Way halo and for extragalactic observations, complementing recent limits obtained with the Fermi-LAT instrument at lower energies. No statistically significant signal could be found. For monochromatic γ-ray line emission, flux limits of (2 × 10(-7) -2 × 10(-5)) m(-2) s(-1) sr(-1) and (1 × 10(-8) -2 × 10(-6)) m(-2) s(-1)sr(-1) are obtained for the central part of the Milky Way halo and extragalactic observations, respectively. For a DM particle mass of 1 TeV, limits on the velocity-averaged DM annihilation cross section ⟨σv⟩(χχ → γγ) reach ∼ 10(-27) cm(3)s(-1), based on the Einasto parametrization of the Galactic DM halo density profile.

19.
Astrophys J ; 768(1)2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34646037

RESUMEN

Supernova remnants (SNRs), as the major contributors to the galactic cosmic rays (CRs), are believed to maintain an average CR spectrum by diffusive shock acceleration regardless of the way they release CRs into the interstellar medium (ISM). However, the interaction of the CRs with nearby gas clouds crucially depends on the release mechanism. We call into question two aspects of a popular paradigm of the CR injection into the ISM, according to which they passively and isotropically diffuse in the prescribed magnetic fluctuations as test particles. First, we treat the escaping CR and the Alfvén waves excited by them on an equal footing. Second, we adopt field-aligned CR escape outside the source, where the waves become weak. An exact analytic self-similar solution for a CR "cloud" released by a dimmed accelerator strongly deviates from the test-particle result. The normalized CR partial pressure may be approximated as P ( p , z , t ) = 2 [ | z | 5 / 3 + z dif 5 / 3 ( p , t ) ] - 3 / 5  exp [ - z 2 / 4 D ISM ( p ) t ] , where p is the momentum of CR particle, and z is directed along the field. The core of the cloud expands as z dif ∝ D NL ( p ) t and decays in time as P ∝ 2 z dif - 1 ( t ) . The diffusion coefficient D NL is strongly suppressed compared to its background ISM value D ISM: D NL ~ D ISM exp (-Π) ≪ D ISM for sufficiently high field-line-integrated CR partial pressure, Π. When Π â‰« 1, the CRs drive Alfvén waves efficiently enough to build a transport barrier ( P ≈ 2 / | z | - "  pedestal " ) that strongly reduces the leakage. The solution has a spectral break at p = p br, where p br satisfies the equation D NL ( p br ) ≃ z 2 / t .

20.
Nature ; 482(7386): 507-9, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22343893

RESUMEN

Pulsars are thought to eject electron-positron winds that energize the surrounding environment, with the formation of a pulsar wind nebula. The pulsar wind originates close to the light cylinder, the surface at which the pulsar co-rotation velocity equals the speed of light, and carries away much of the rotational energy lost by the pulsar. Initially the wind is dominated by electromagnetic energy (Poynting flux) but later this is converted to the kinetic energy of bulk motion. It is unclear exactly where this takes place and to what speed the wind is accelerated. Although some preferred models imply a gradual acceleration over the entire distance from the magnetosphere to the point at which the wind terminates, a rapid acceleration close to the light cylinder cannot be excluded. Here we report that the recent observations of pulsed, very high-energy γ-ray emission from the Crab pulsar are explained by the presence of a cold (in the sense of the low energy of the electrons in the frame of the moving plasma) ultrarelativistic wind dominated by kinetic energy. The conversion of the Poynting flux to kinetic energy should take place abruptly in the narrow cylindrical zone of radius between 20 and 50 light-cylinder radii centred on the axis of rotation of the pulsar, and should accelerate the wind to a Lorentz factor of (0.5-1.0) × 10(6). Although the ultrarelativistic nature of the wind does support the general model of pulsars, the requirement of the very high acceleration of the wind in a narrow zone not far from the light cylinder challenges current models.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...