Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 14(7)2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35890207

RESUMEN

Recent research points to mesenchymal stem cells' potential for treating neurological disorders, especially drug addiction. We examined the longitudinal effect of placenta-derived mesenchymal stromal-like cells (PLX-PAD) in a rat model for cocaine addiction. Sprague-Dawley male rats were trained to self-administer cocaine or saline daily until stable maintenance. Before the extinction phase, PLX-PAD cells were administered by intracerebroventricular or intranasal routes. Neurogenesis was evaluated, as was behavioral monitoring for craving. We labeled the PLX-PAD cells with gold nanoparticles and followed their longitudinal migration in the brain parallel to their infiltration of essential peripheral organs both by micro-CT and by inductively coupled plasma-optical emission spectrometry. Cell locations in the brain were confirmed by immunohistochemistry. We found that PLX-PAD cells attenuated cocaine-seeking behavior through their capacity to migrate to specific mesolimbic regions, homed on the parenchyma in the dentate gyrus of the hippocampus, and restored neurogenesis. We believe that intranasal cell therapy is a safe and effective approach to treating addiction and may offer a novel and efficient approach to rehabilitation.

2.
Front Neurosci ; 15: 773197, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899172

RESUMEN

Cocaine addiction is an acquired behavioral state developed in vulnerable individuals after cocaine exposure. It is characterized by compulsive drug-seeking and high vulnerability to relapse even after prolonged abstinence, associated with decreased neurogenesis in the hippocampus. This addictive state is hypothesized to be a form of "memory disease" in which the drug exploits the physiological neuroplasticity mechanisms that mediate regular learning and memory processes. Therefore, a major focus of the field has been to identify the cocaine-induced neuroadaptations occurring in the usurped brain's reward circuit. The neurosteroid dehydroepiandrosterone (DHEA) affects brain cell morphology, differentiation, neurotransmission, and memory. It also reduces drug-seeking behavior in an animal model of cocaine self-administration. Here, we examined the long-lasting effects of DHEA treatment on the attenuation of cocaine-seeking behavior. We also examined its short- and long-term influence on hippocampal cells architecture (neurons and astrocytes). Using a behavioral examination, immunohistochemical staining, and diffusion tensor imaging, we found an immediate effect on tissue density and activation of astrocytes, which has a continuous beneficial effect on neurogenesis and tissue organization. This research emphasizes the requites concert between astrocytes and neurons in the rehabilitation from addiction behavior. Thus, DHEA may serve as a treatment that corrects brain damage following exposure to and abstinence from cocaine.

3.
Vitam Horm ; 108: 385-412, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30029736

RESUMEN

Drug addiction has a great negative influence on society, both social and economic burden. It was widely thought that addicts could choose to stop using drugs if only they had some self-control and principles. Nowadays, science has changed this view, defining drug addiction as a complex brain disease that affects behavior in many ways, both biological and psychological. Currently there is no ground-breaking reliable treatment for drug addiction. For more than a decade we are researching an alternative approach for intervention with drug craving and relapse to its usage, using DHEA, a well-being and antiaging food supplement. In this chapter we navigate through the significant therapeutic effect of DHEA on the brain circuits that control addiction and on behavioral performance both in animal models and addicts. We suggest that an integrative program of add-on DHEA treatment may further enable to dynamically evaluate the progress of rehabilitation of an individual patient, in a comprehensive assessment. Such a program may boost and support the detoxification and rehabilitation process, and help patients regain a normal life in a shorter amount of time.


Asunto(s)
Deshidroepiandrosterona/uso terapéutico , Trastornos Relacionados con Sustancias/tratamiento farmacológico , Animales , Conducta Adictiva , Humanos , Trastornos Mentales/tratamiento farmacológico , Estrés Fisiológico , Síndrome de Abstinencia a Sustancias/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA