Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 6(17): 11286-11296, 2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-34056284

RESUMEN

Of the three enzymes in the human cytochrome P450 family 1, CYP1A2 is an important enzyme mediating metabolism of xenobiotics including drugs in the liver, while CYP1A1 and CYP1B1 are expressed in extrahepatic tissues. Currently used CYP substrates, such as 7-ethoxycoumarin and 7-ethoxyresorufin, are oxidized by all individual CYP1 forms. The main aim of this study was to find profluorescent coumarin substrates that are more selective for the individual CYP1 forms. Eleven 3-phenylcoumarin derivatives were synthetized, their enzyme kinetic parameters were determined, and their interactions in the active sites of CYP1 enzymes were analyzed by docking and molecular dynamic simulations. All coumarin derivatives and 7-ethoxyresorufin and 7-pentoxyresorufin were oxidized by at least one CYP1 enzyme. 3-(3-Methoxyphenyl)-6-methoxycoumarin (19) was 7-O-demethylated by similar high efficiency [21-30 ML/(min·mol CYP)] by all CYP1 forms and displayed similar binding in the enzyme active sites. 3-(3-Fluoro-4-acetoxyphenyl)coumarin (14) was selectively 7-O-demethylated by CYP1A1, but with low efficiency [0.16 ML/(min mol)]. This was explained by better orientation and stronger H-bond interactions in the active site of CYP1A1 than that of CYP1A2 and CYP1B1. 3-(4-Acetoxyphenyl)-6-chlorocoumarin (20) was 7-O-demethylated most efficiently by CYP1B1 [53 ML/(min·mol CYP)], followed by CYP1A1 [16 ML/(min·mol CYP)] and CYP1A2 [0.6 ML/(min·mol CYP)]. Variations in stabilities of complexes between 20 and the individual CYP enzymes explained these differences. Compounds 14, 19, and 20 are candidates to replace traditional substrates in measuring activity of human CYP1 enzymes.

2.
Chem Biol Drug Des ; 94(4): 1799-1812, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31260165

RESUMEN

A novel virtual screening methodology called fragment- and negative image-based (F-NiB) screening is introduced and tested experimentally using phosphodiesterase 10A (PDE10A) as a case study. Potent PDE10A-specific small-molecule inhibitors are actively sought after for their antipsychotic and neuroprotective effects. The F-NiB combines features from both fragment-based drug discovery and negative image-based (NIB) screening methodologies to facilitate rational drug discovery. The selected structural parts of protein-bound ligand(s) are seamlessly combined with the negative image of the target's ligand-binding cavity. This cavity- and fragment-based hybrid model, namely its shape and electrostatics, is used directly in the rigid docking of ab initio generated ligand 3D conformers. In total, 14 compounds were acquired using the F-NiB methodology, 3D quantitative structure-activity relationship modeling, and pharmacophore modeling. Three of the small molecules inhibited PDE10A at ~27 to ~67 µM range in a radiometric assay. In a larger context, the study shows that the F-NiB provides a flexible way to incorporate small-molecule fragments into the drug discovery.


Asunto(s)
Simulación del Acoplamiento Molecular , Inhibidores de Fosfodiesterasa/química , Hidrolasas Diéster Fosfóricas/química , Evaluación Preclínica de Medicamentos , Humanos
3.
Int J Mol Sci ; 20(11)2019 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-31174295

RESUMEN

Negative image-based (NIB) screening is a rigid molecular docking methodology that can also be employed in docking rescoring. During the NIB screening, a negative image is generated based on the target protein's ligand-binding cavity by inverting its shape and electrostatics. The resulting NIB model is a drug-like entity or pseudo-ligand that is compared directly against ligand 3D conformers, as is done with a template compound in the ligand-based screening. This cavity-based rigid docking has been demonstrated to work with genuine drug targets in both benchmark testing and drug candidate/lead discovery. Firstly, the study explores in-depth the applicability of different ligand 3D conformer generation software for acquiring the best NIB screening results using cyclooxygenase-2 (COX-2) as the example system. Secondly, the entire NIB workflow from the protein structure preparation, model build-up, and ligand conformer generation to the similarity comparison is performed for COX-2. Accordingly, hands-on instructions are provided on how to employ the NIB methodology from start to finish, both with the rigid docking and docking rescoring using noncommercial software. The practical aspects of the NIB methodology, especially the effect of ligand conformers, are discussed thoroughly, thus, making the methodology accessible for new users.


Asunto(s)
Inhibidores de la Ciclooxigenasa 2/química , Descubrimiento de Drogas/métodos , Simulación del Acoplamiento Molecular/métodos , Sitios de Unión , Ciclooxigenasa 2/química , Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa 2/farmacología , Humanos , Unión Proteica
4.
Chem Biol Drug Des ; 93(4): 522-538, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30468569

RESUMEN

The estimation of the correct binding mode and affinity of a ligand into a target protein using computational methods is challenging. However, docking can introduce poses from which the correct binding mode could be identified using other methods. Here, we analyzed the reliability of binding energy estimation using the molecular mechanics-generalized Born surface area (MMGBSA) method without and with energy minimization to identify the likely ligand binding modes within docking results. MMGBSA workflow (a) outperformed docking in recognizing the correct binding modes of androgen receptor ligands and (b) improved the correlation coefficient of computational and experimental results of rescored docking poses to phosphodiesterase 4B. Combined with stability and atomic distance analysis, MMGBSA helped to (c) identify the binding modes and sites of metabolism of cytochrome P450 2A6 substrates. The standard deviation of estimated binding energy within one simulation was lowered by minimization in all three example cases. Minimization improved the identification of the correct binding modes of androgen receptor ligands. Although only three case studies are shown, the results are analogous and indicate that these behaviors could be generalized. Such identified binding modes could be further used, for example, with free energy perturbation methods to understand binding energetics more accurately.


Asunto(s)
Citocromo P-450 CYP2A6/química , Ligandos , Simulación del Acoplamiento Molecular , Sitios de Unión , Cumarinas/química , Cumarinas/metabolismo , Citocromo P-450 CYP2A6/metabolismo , Humanos , Unión Proteica , Estructura Terciaria de Proteína , Especificidad por Sustrato , Termodinámica
5.
Xenobiotica ; 49(9): 1015-1024, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30272491

RESUMEN

Cytochrome P450 (CYP) enzymes constitute an essential xenobiotic metabolizing system that regulates the elimination of lipophilic compounds from the body. Convenient and affordable assays for CYP enzymes are important for assessing these metabolic pathways. In this study, 10 novel profluorescent coumarin derivatives with various substitutions at carbons 3, 6 and 7 were developed. Molecular modeling indicated that 3-phenylcoumarin offers an excellent scaffold for the development of selective substrate compounds for various human CYP forms, as they could be metabolized to fluorescent 7-hydroxycoumarin derivatives. Oxidation of profluorescent coumarin derivatives to fluorescent metabolites by 13 important human liver xenobiotic-metabolizing CYP forms was determined by enzyme kinetic assays. Four of the coumarin derivatives were converted to fluorescent metabolites by CYP1 family enzymes, with 6-methoxy-3-(4-trifluoromethylphenyl)coumarin being oxidized selectively by CYP1A2 in human liver microsomes. Another set of four compounds were metabolized by CYP2A6 and CYP1 enzymes. 7-Methoxy-3-(3-methoxyphenyl)coumarin was oxidized efficiently by CYP2C19 and CYP2D6 in a non-selective fashion. The advantages of the novel substrates were (1) an excellent signal-to-background ratio, (2) selectivity for CYP1 forms, and (3) convenient multiwell plate measurement, allowing for precise determination of potential inhibitors of important human hepatic forms CYP1A2, CYP2C19 and CYP2D6.


Asunto(s)
Cumarinas/química , Cumarinas/metabolismo , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/metabolismo , Benzoflavonas/metabolismo , Benzoflavonas/farmacología , Cumarinas/síntesis química , Inhibidores Enzimáticos del Citocromo P-450/metabolismo , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Sistema Enzimático del Citocromo P-450/genética , Fluorescencia , Humanos , Inactivación Metabólica , Cinética , Microsomas Hepáticos/metabolismo , Modelos Moleculares , Simulación del Acoplamiento Molecular , Oxidación-Reducción
6.
Front Pharmacol ; 9: 260, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29632488

RESUMEN

Despite the large computational costs of molecular docking, the default scoring functions are often unable to recognize the active hits from the inactive molecules in large-scale virtual screening experiments. Thus, even though a correct binding pose might be sampled during the docking, the active compound or its biologically relevant pose is not necessarily given high enough score to arouse the attention. Various rescoring and post-processing approaches have emerged for improving the docking performance. Here, it is shown that the very early enrichment (number of actives scored higher than 1% of the highest ranked decoys) can be improved on average 2.5-fold or even 8.7-fold by comparing the docking-based ligand conformers directly against the target protein's cavity shape and electrostatics. The similarity comparison of the conformers is performed without geometry optimization against the negative image of the target protein's ligand-binding cavity using the negative image-based (NIB) screening protocol. The viability of the NIB rescoring or the R-NiB, pioneered in this study, was tested with 11 target proteins using benchmark libraries. By focusing on the shape/electrostatics complementarity of the ligand-receptor association, the R-NiB is able to improve the early enrichment of docking essentially without adding to the computing cost. By implementing consensus scoring, in which the R-NiB and the original docking scoring are weighted for optimal outcome, the early enrichment is improved to a level that facilitates effective drug discovery. Moreover, the use of equal weight from the original docking scoring and the R-NiB scoring improves the yield in most cases.

7.
J Enzyme Inhib Med Chem ; 33(1): 743-754, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29620427

RESUMEN

A comprehensive set of 3-phenylcoumarin analogues with polar substituents was synthesised for blocking oestradiol synthesis by 17-ß-hydroxysteroid dehydrogenase 1 (HSD1) in the latter part of the sulphatase pathway. Five analogues produced ≥62% HSD1 inhibition at 5 µM and, furthermore, three of them produced ≥68% inhibition at 1 µM. A docking-based structure-activity relationship analysis was done to determine the molecular basis of the inhibition and the cross-reactivity of the analogues was tested against oestrogen receptor, aromatase, cytochrome P450 1A2, and monoamine oxidases. Most of the analogues are only modestly active with 17-ß-hydroxysteroid dehydrogenase 2 - a requirement for lowering effective oestradiol levels in vivo. Moreover, the analysis led to the synthesis and discovery of 3-imidazolecoumarin as a potent aromatase inhibitor. In short, coumarin core can be tailored with specific ring and polar moiety substitutions to block either the sulphatase pathway or the aromatase pathway for treating breast cancer and endometriosis.


Asunto(s)
17-Hidroxiesteroide Deshidrogenasas/antagonistas & inhibidores , Cumarinas/farmacología , Inhibidores Enzimáticos/farmacología , Estradiol/biosíntesis , 17-Hidroxiesteroide Deshidrogenasas/metabolismo , Diseño Asistido por Computadora , Cumarinas/síntesis química , Cumarinas/química , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad
8.
Front Chem ; 6: 41, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29552556

RESUMEN

Monoamine oxidase B (MAO-B) catalyzes deamination of monoamines such as neurotransmitters dopamine and norepinephrine. Accordingly, small-molecule MAO-B inhibitors potentially alleviate the symptoms of dopamine-linked neuropathologies such as depression or Parkinson's disease. Coumarin with a functionalized 3-phenyl ring system is a promising scaffold for building potent MAO-B inhibitors. Here, a vast set of 3-phenylcoumarin derivatives was designed using virtual combinatorial chemistry or rationally de novo and synthesized using microwave chemistry. The derivatives inhibited the MAO-B at 100 nM-1 µM. The IC50 value of the most potent derivative 1 was 56 nM. A docking-based structure-activity relationship analysis summarizes the atom-level determinants of the MAO-B inhibition by the derivatives. Finally, the cross-reactivity of the derivatives was tested against monoamine oxidase A and a specific subset of enzymes linked to estradiol metabolism, known to have coumarin-based inhibitors. Overall, the results indicate that the 3-phenylcoumarins, especially derivative 1, present unique pharmacological features worth considering in future drug development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...