Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Food Sci Technol ; 59(7): 2545-2561, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35734116

RESUMEN

Twelve wheat genotypes with variable grain hardness were evaluated for grain, flour, pasting, dough rheological properties, high molecular weight glutenin subunits (HMW-GS) and their relationship with cookie quality characteristics. The degree of hardness played an important role in the expression of characters under study. Genotypes with higher grain hardness index (GHI) showed higher dough development time and dough stability. GHI and solvent retention capacity were positively related to each other and negatively to spread factor. GluD1 locus of majority of hard wheat genotypes showed 5 + 10 subunit while soft wheat (SW) genotypes with 2 + 12 subunit related to gluten quality and dough properties. Overall, variation in subunits at GluD1 locus led to greater variation amongst studied genotypes followed by GluB1 and GluA1. Subunits Null at GluA1, 20, 7 + 8 and 7 + 9 at GluB1, and 2 + 12 and 5 + 10 at GluD1 showed a profound effect on flour, dough and cookie quality. Distribution of different HMW-GS, gluten characteristics and GHI, thus emerged as major parameters for selection of wheat genotypes for development of cookies. SW (QBP 13-11) with the lowest GHI and HMW-GS profile (2*, 7 and 2 + 12 subunit) showed the highest cookie SF and the lowest BS, thereby, turning out to be the best suitable genotype for producing cookies. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-021-05272-5.

2.
Sci Rep ; 12(1): 7037, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35487909

RESUMEN

Malnutrition due to micronutrients and protein deficiency is recognized among the major global health issues. Genetic biofortification of wheat is a cost-effective and sustainable strategy to mitigate the global micronutrient and protein malnutrition. Genomic regions governing grain zinc concentration (GZnC), grain iron concentration (GFeC), grain protein content (GPC), test weight (TW), and thousand kernel weight (TKW) were investigated in a set of 184 diverse bread wheat genotypes through genome-wide association study (GWAS). The GWAS panel was genotyped using Breeders' 35 K Axiom Array and phenotyped in three different environments during 2019-2020. A total of 55 marker-trait associations (MTAs) were identified representing all three sub-genomes of wheat. The highest number of MTAs were identified for GPC (23), followed by TKW (15), TW (11), GFeC (4), and GZnC (2). Further, a stable SNP was identified for TKW, and also pleiotropic regions were identified for GPC and TKW. In silico analysis revealed important putative candidate genes underlying the identified genomic regions such as F-box-like domain superfamily, Zinc finger CCCH-type proteins, Serine-threonine/tyrosine-protein kinase, Histone deacetylase domain superfamily, and SANT/Myb domain superfamily proteins, etc. The identified novel MTAs will be validated to estimate their effects in different genetic backgrounds for subsequent use in marker-assisted selection.


Asunto(s)
Desnutrición , Triticum , Grano Comestible/genética , Estudio de Asociación del Genoma Completo , Desnutrición/metabolismo , Micronutrientes/genética , Micronutrientes/metabolismo , Triticum/genética
3.
Front Nutr ; 8: 669444, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34211996

RESUMEN

Micronutrient and protein malnutrition is recognized among the major global health issues. Genetic biofortification is a cost-effective and sustainable strategy to tackle malnutrition. Genomic regions governing grain iron concentration (GFeC), grain zinc concentration (GZnC), grain protein content (GPC), and thousand kernel weight (TKW) were investigated in a set of 163 recombinant inbred lines (RILs) derived from a cross between cultivated wheat variety WH542 and a synthetic derivative (Triticum dicoccon PI94624/Aegilops tauschii [409]//BCN). The RIL population was genotyped using 100 simple-sequence repeat (SSR) and 736 single nucleotide polymorphism (SNP) markers and phenotyped in six environments. The constructed genetic map had a total genetic length of 7,057 cM. A total of 21 novel quantitative trait loci (QTL) were identified in 13 chromosomes representing all three genomes of wheat. The trait-wise highest number of QTL was identified for GPC (10 QTL), followed by GZnC (six QTL), GFeC (three QTL), and TKW (two QTL). Four novel stable QTL (QGFe.iari-7D.1, QGFe.iari-7D.2, QGPC.iari-7D.2, and QTkw.iari-7D) were identified in two or more environments. Two novel pleiotropic genomic regions falling between Xgwm350-AX-94958668 and Xwmc550-Xgwm350 in chromosome 7D harboring co-localized QTL governing two or more traits were also identified. The identified novel QTL, particularly stable and co-localized QTL, will be validated to estimate their effects on different genetic backgrounds for subsequent use in marker-assisted selection (MAS). Best QTL combinations were identified by the estimation of additive effects of the stable QTL for GFeC, GZnC, and GPC. A total of 11 RILs (eight for GZnC and three for GPC) having favorable QTL combinations identified in this study can be used as potential donors to develop bread wheat varieties with enhanced micronutrients and protein.

4.
Food Chem ; 344: 128725, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33279352

RESUMEN

The physicochemical and functional characteristics of grain, meal and flour of timely sown wheat (TSW) and delayed sown wheat (DSW) were compared to see the effects of heat stress (HS). TSW and DSW of different lines were sown as per the approved timings. DSW experienced higher temperature during flowering and had shorter vegetative and maturation period than TSW. Pasting and dough rheological properties were measured using Rapid Visco-Analyser and Farinograph, respectively, while gliadins and glutenins profiling was done by SDS-PAGE. Delayed sowing decreased grain yield and diameter while increased protein and all categories of gliadins and high molecular weight glutenins. DSW showed higher peak viscosity, breakdown-viscosity and dough stability and lower setback viscosity, damaged starch, arabinoxylans and water absorption than TSW. HS in DSW appeared to lower starch synthesis causing proportionate increase in grain hardness and proteins content leading to changes in milling and rheological characteristics.


Asunto(s)
Fenómenos Químicos , Harina/análisis , Respuesta al Choque Térmico , Triticum/química , Granos Enteros/química , Glútenes/química , Dureza , Reología , Almidón/química , Viscosidad , Agua/química
5.
Food Chem ; 341(Pt 1): 128201, 2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33038775

RESUMEN

Wheatgrass juice powder (WJP) from four wheat varieties grown using soil, coco-peat with nutrient solution (CNS) and water (soaked (8 h), germinated (36 h) and harvested on 10th day) were examined for proximate composition, mineral, amino acid, phenolic (free and bound) composition and antioxidant properties. The yield, ash and protein contents of WJP ranged between 4.88-7.87%, 5.18-15.93% and 38.75-50.17%, respectively. The total phenolic, flavonoid, chlorophyll content (TCC) and antioxidant activity varied from 12.02 to 17.44 mg GAE/g, 4.38-10.10 mg QE/g, 3.01-5.63 mg/g, and 13.54-17.33 µmol TE/g, respectively. HD-3086 grown using soil exhibited highest antioxidant properties, TCC and Mg content. WJP of C-306 grown using CNS had abundant essential amino acids (AAs). Phenolic acids (ferulic, syringic and sinapic acids) and flavonoids (catechin, rutin, vitexin and isovitexin) and minerals (K, P, Ca, Mg, Na and Fe) were predominant in WJP. The AAs and free phenolics were more in CNS and soil grown WJP, respectively.


Asunto(s)
Aminoácidos/análisis , Minerales/análisis , Fenoles/análisis , Triticum/química , Triticum/crecimiento & desarrollo , Aminoácidos/metabolismo , Antioxidantes/química , Clorofila/análisis , Clorofila/metabolismo , Flavonoides/análisis , Flavonoides/metabolismo , Jugos de Frutas y Vegetales , Minerales/metabolismo , Fenoles/metabolismo , Triticum/metabolismo
6.
J Food Sci ; 85(1): 65-76, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31869859

RESUMEN

The effect of lipids extraction on protein salvation, pasting, and dough rheological behavior of flours dough from hard wheat (HW), extraordinarily soft wheat (Ex-SW), and medium-hard wheat (MHW) flour was analyzed. The varieties selected had wide variation in grain hardness index (17 to 95). Ex-SW revealed lower tryptophan fluorescent emission and water absorption (WA) than MHW and HW varieties. The change in pasting parameters on defatting was the highest for Ex-SW varieties. Native flour (NF) of HW varieties showed high protein content, pasting and dough strength, and fluorescence intensity in comparison to Ex-SW varieties, while on defatting this was reversed. Protein pattern of defatted flour and NF did not differ significantly. Defatting of flours increased WA and decreased dough stability (DS). The decrease in DS on defatting was more for Ex-SW varieties than others. DS for HW and MHW varieties reduced upon defatting. Defatting significantly increased all mixographic and rheological properties except peak time. Overall, results showed that defatting of flour improved paste and dough strength. PRACTICAL APPLICATION: Higher gluten strength of defatted wheat flour of varied grain hardness has wide applications. Most of the Indian bread wheat varieties possess GluD1 high-molecular-weight glutenin subunit (HMW-GS) allelic composition of (2 + 12), which is not suitable for bread making due to weak gluten strength. Defatting of flours improved the gluten strength of strong and weak flour dough of different wheat varieties irrespective of GluD1 allelic composition for HMW-GS. Defatted flour may be used to improve the baking and cooking performance of dough made from weak wheat. These findings are highly suitable for wheat milling and baked product manufacturing industries.


Asunto(s)
Harina/análisis , Manipulación de Alimentos/métodos , Triticum/química , Pan/análisis , Culinaria , Glútenes/química , Dureza , Reología , Triticum/clasificación
7.
J Food Sci Technol ; 56(4): 1696-1707, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30996405

RESUMEN

The aim of this study was to screen Indian cultivated wheat varieties and list out the parameters/genes required to be improved for an end-product. Therefore, 30 Indian wheat varieties under cultivation by farmers were screened for 14 physico-chemical and rheological parameters, sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) for high molecular weight glutenin subunits (HMW-GS), DNA based molecular markers for low molecular weight glutenin subunits (LMW-GS) and puroindolines (Pin) genes. Based on grain texture, sedimentation value, farinographic, alveographic, HMW-GS and LMW-GS and biscuit making parameters, HS490 was found to be a highly suited for biscuit and soft wheat products. HI1563 and DBW14 were also found to possess characteristics such as low protein, low to medium SDS-sedimentation value and combination of 2*, 7+8 and 2+12 (HMW-GS). DBW14 also had LMW alleles desirable for biscuit quality. DBW14 needs to be improved for grain softness to make it suitable for biscuit quality while both grain softness and LMW alleles need to be improved for HI1563 to improve its biscuit spread factor and alveographic indices for extensible gluten. Rest varieties showed moderate to very strong gluten but the gluten lacked extensibility. Only four varieties K307, DBW39, NI5439 and DBW17 possessed high flour protein and moderately strong gluten. They had more balanced deformation energy (W) and configuration ratio (P/L) combination suggestive of strong and extensible gluten needed for raised bread making. Marker assisted backcross breeding is suggested as solution to produce end-use specific varieties where appropriate alleles at only a few loci need to be incorporated.

8.
J Food Sci Technol ; 55(11): 4661-4674, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30333663

RESUMEN

In the present study coarse fraction (CF), medium fine fraction (MFF) and fine fraction (FF) were separated from flours milled from medium-hard and extraordinarily soft wheat varieties and were evaluated for various quality characteristics. Grain hardness of medium-hard and extraordinarily soft wheat varieties varied from 77 to 80 and 17 to 18, respectively. Ash and protein content was the highest for FF and the lowest for CF. Varieties with greater hardness produced higher CF and lower of FF. FF showed higher unextractable polymeric protein (UnEx-PP) and dough stability as compared to MFF and CF. FF showed lower damage starch content as related by lower Sodium SRC (NaSRC) as compared to MFF and FF. CF showed higher paste viscosities than FF and difference were greater amongst fractions from varieties with lower grain hardness. FF with greater proportion of small size particles showed greater accumulation of 98 kDa and 85 kDa PPs than CF. This study demonstrated that fractionation of flours can be employed to produce fractions with varied gluten strength required for production of various products.

9.
Food Res Int ; 100(Pt 2): 306-317, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28888455

RESUMEN

Hard wheat (HW), medium-hard wheat (MHW) and extraordinarily soft wheat (Ex-SW) varieties with grain hardness index (GHI) of 83 to 95, 72 to 80, 17 to 29 were evaluated for pasting, protein molecular weight (MW) distribution, dough rheology and baking properties. Flours from varieties with higher GHI had more protein content, ash content and paste viscosities. Ex-SW had more glutenins proportion as compared to HW and MHW. Flours from Ex-SW varieties showed lower NaSRC, WA and mixographic parameters as compared to HW and MHW. Dough from flours milled from Ex-SW had higher Intermolecular-ß-sheets (IM-ß-sheets) than those from MHW and HW. Muffins volume increased with decrease in GHI, Ex-SW varieties had more muffin volume and less air space. The accumulation of polypeptides (PPs) varied significantly in different varieties. Ex-SW variety (QBP12-10) showed accumulation of 98, 90, 81 and 79kDa PPs, which was unique and was different from other varieties.


Asunto(s)
Pan/análisis , Manipulación de Alimentos , Glútenes/análisis , Proteínas de Plantas/análisis , Triticum/química , Grano Comestible/química , Harina/análisis , Dureza , India , Peso Molecular , Tamaño de la Partícula , Reología , Viscosidad
10.
PLoS One ; 12(4): e0174972, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28384292

RESUMEN

Genomic regions responsible for accumulation of grain iron concentration (Fe), grain zinc concentration (Zn), grain protein content (PC) and thousand kernel weight (TKW) were investigated in 286 recombinant inbred lines (RILs) derived from a cross between an old Indian wheat variety WH542 and a synthetic derivative (Triticum dicoccon PI94624/Aegilops squarrosa [409]//BCN). RILs were grown in six environments and evaluated for Fe, Zn, PC, and TKW. The population showed the continuous distribution for all the four traits, that for pooled Fe and PC was near normal, whereas, for pooled Zn, RILs exhibited positively skewed distribution. A genetic map spanning 2155.3cM was constructed using microsatellite markers covering the 21 chromosomes and used for QTL analysis. 16 quantitative trait loci (QTL) were identified in this study. Four QTLs (QGFe.iari-2A, QGFe.iari-5A, QGFe.iari-7A and QGFe.iari-7B) for Fe, five QTLs (QGZn.iari-2A, QGZn.iari-4A, QGZn.iari-5A, QGZn.iari-7A and QGZn.iari-7B) for Zn, two QTLs (QGpc.iari-2A and QGpc.iari-3A) for PC, and five QTLs (QTkw.iari-1A, QTkw.iari-2A, QTkw.iari-2B, QTkw.iari-5B and QTkw.iari-7A) for TKW were identified. The QTLs together explained 20.0%, 32.0%, 24.1% and 32.3% phenotypic variation, respectively, for Fe, Zn, PC and TKW. QGpc.iari-2A was consistently expressed in all the six environments, whereas, QGFe.iari-7B and QGZn.iari-2A were identified in two environments each apart from pooled mean. QTkw.iari-2A and QTkw.iari-7A, respectively, were identified in four and three environments apart from pooled mean. A common region in the interval of Xgwm359-Xwmc407 on chromosome 2A was associated with Fe, Zn, and PC. One more QTL for TKW was identified on chromosome 2A but in a different chromosomal region (Xgwm382-Xgwm359). Two more regions on 5A (Xgwm126-Xgwm595) and 7A (Xbarc49-Xwmc525) were found to be associated with both Fe and Zn. A QTL for TKW was identified (Xwmc525-Xbarc222) in a different chromosomal region on the same chromosome (7A). This reflects at least a partly common genetic basis for the four traits. It is concluded that fine mapping of the regions of the three chromosomes of A genome involved in determining the accumulation of Fe, Zn, PC, and TKW in this mapping population may be rewarding.


Asunto(s)
Hierro/análisis , Proteínas de Plantas/análisis , Triticum/química , Zinc/análisis , Genes de Plantas , Sitios de Carácter Cuantitativo , Triticum/genética
11.
J Food Sci Technol ; 53(4): 2127-38, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27413243

RESUMEN

Starch and flour properties of different Indian durum wheat varieties were evaluated and related to noodle-making properties. Flours were evaluated for pasting properties, protein characteristics (extractable as well as unextractable monomeric and polymeric proteins) and dough rheology (farinographic properties), while starches were evaluated for granule size, thermal, pasting, and rheological properties. Flour peak and final viscosities related negatively to the proportion of monomeric proteins but positively to that of polymeric proteins whereas opposite relations were observed for dough rheological properties (dough-development time and stability). Starches from varieties with higher proportion of large granules showed the presence of less stable amylose-lipids and had more swelling power, peak viscosity and breakdown viscosity than those with greater proportion of small granules. Noodle-cooking time related positively to the proportion of monomeric proteins and starch gelatinization temperatures but negatively to that of polymeric proteins and amylose content. Varieties with more proteins resulted in firmer noodles. Noodle-cohesiveness related positively to the proportion of polymeric proteins and amylose-lipids complexes whereas springiness correlated negatively to amylose content and retrogradation tendency of starches.

12.
Food Chem ; 194: 337-44, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26471563

RESUMEN

The relationships of polymeric as well as monomeric proteins (unextractable and extractable) with various flour properties amongst Indian wheat varieties were evaluated. Unextractable polymeric proteins and unextractable monomeric proteins in flours ranged from 23.83% to 51.97% and 48.03% to 76.17%, respectively. Varieties with higher grain hardness index resulted into flours with higher a(∗), ash content and protein content. Unextractable polymeric and monomeric proteins were related to grain hardness index. Unextractable polymeric proteins showed a positive correlation with gluten index and LASRC. Majority of varieties with HMW-GS combinations of 91kDa+80kDa+78kDa+74kDa PPs showed very high grain hardness index (97-100).


Asunto(s)
Grano Comestible/química , Harina/análisis , Glútenes/química , Triticum/química , India
13.
Food Chem ; 197(Pt A): 316-24, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26616955

RESUMEN

The relationship between protein molecular weight (MW) distribution, quality characteristics and muffin making properties amongst Indian wheat varieties were evaluated. Flours from varieties with higher grain weight showed lower proportion of fine particles. Lactic acid solvent retention capacity (LASRC), sedimentation value (SV) and dough stability (DS) correlated with the proportion of 0-55 µm size particles. Paste peak viscosity and breakdown viscosity showed positive correlation with polymeric protein and negatively with monomeric protein, α-amylase activity and sodium carbonate solvent retention capacity (NaSRC). Gluten strength indicators such as DS, dough development time (DDT), LASRC and gluten index (GI) were positively related to polymeric protein and negatively to monomeric protein. Both G' and G″ were correlated significantly with GI, LASRC, DS and DDT. The varieties that possesses high MW glutenin subunits combinations of 91 kDa + 84 kDa + 78 kDa + 74 kDa showed lower G' and G″. Muffin volume was positively correlated with gluten content and LASRC.


Asunto(s)
Proteínas de Plantas/análisis , Triticum/química , Harina/análisis , Manipulación de Alimentos , Glútenes/análisis , Peso Molecular , Tamaño de la Partícula , Triticum/clasificación , Triticum/genética , Viscosidad , alfa-Amilasas/metabolismo
14.
Food Chem ; 188: 517-26, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26041226

RESUMEN

The grain, flour, dough and noodle making properties of Indian durum wheat varieties were evaluated. Varieties having higher grain weight had lower hardness and higher yellow pigment content. Gluten performance index showed positive correlation with α-helix and negative with intermolecular+antiparallel-ß-sheets in gluten. The proportion of extracted polymeric proteins was related to dough strength. Elastic (G') and loss (G″) modulus of dough were positively correlated to intermolecular+antiparallel-ß-sheets and negatively with ß-turn+ ß-sheets proportion of dough and gluten. PDW291 with exceptionally higher G' and G″ and best noodle making properties showed the presence 90 kDa and 88 kDa polypeptides corresponding to 14+15 and type 2 banding pattern.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Harina/análisis , Triticum/química
15.
Food Chem ; 158: 48-55, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24731313

RESUMEN

The relationships of grain, flour solvent retention capacity (SRC) and dough rheological properties with the cookie making properties of wheat cultivars were evaluated. Cultivars with higher proportion of intermolecular-ß-sheets+antiparallel ß sheets and lower α-helix had greater gluten strength. The grain weight and diameter positively correlated with the proportion of fine particles and the cookie spread factor (SF) and negatively to the grain hardness (GH) and Na2CO3 SRC. The SF was higher in the flour with a higher amount of fine particle and with a lower Na2CO3 SRC and dough stability (DS). The breaking strength (BS) of cookies was positively correlated to lactic acid (LA) SRC, DS, peak time, sedimentation value (SV), G' and G″. Na2CO3 SRC and GH were strongly correlated. The gluten performance index showed a strong positive correlation with SV, DS, G' and G″. The water absorption had a significant positive correlation with sucrose SRC and LASRC. Cultivars with higher GH produced higher amount of coarse particles in flours that had higher Na2CO3 SRC and lower cookie SF.


Asunto(s)
Harina/análisis , Triticum/química , Grano Comestible , Reología , Solventes , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...