Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 48(21): 12030-12041, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33211866

RESUMEN

The CII protein of temperate coliphage 186, like the unrelated CII protein of phage λ, is a transcriptional activator that primes expression of the CI immunity repressor and is critical for efficient establishment of lysogeny. 186-CII is also highly unstable, and we show that in vivo degradation is mediated by both FtsH and RseP. We investigated the role of CII instability by constructing a 186 phage encoding a protease resistant CII. The stabilised-CII phage was defective in the lysis-lysogeny decision: choosing lysogeny with close to 100% frequency after infection, and forming prophages that were defective in entering lytic development after UV treatment. While lysogenic CI concentration was unaffected by CII stabilisation, lysogenic transcription and CI expression was elevated after UV. A stochastic model of the 186 network after infection indicated that an unstable CII allowed a rapid increase in CI expression without a large overshoot of the lysogenic level, suggesting that instability enables a decisive commitment to lysogeny with a rapid attainment of sensitivity to prophage induction.


Asunto(s)
Proteasas ATP-Dependientes/genética , Colifagos/genética , Endopeptidasas/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Lisogenia , Proteínas de la Membrana/genética , Profagos/genética , Proteínas Virales/genética , Proteasas ATP-Dependientes/metabolismo , Colifagos/crecimiento & desarrollo , Colifagos/metabolismo , Colifagos/efectos de la radiación , Endopeptidasas/metabolismo , Escherichia coli/metabolismo , Escherichia coli/efectos de la radiación , Escherichia coli/virología , Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Modelos Estadísticos , Profagos/crecimiento & desarrollo , Profagos/metabolismo , Profagos/efectos de la radiación , Estabilidad Proteica/efectos de la radiación , Proteolisis/efectos de la radiación , Procesos Estocásticos , Activación Transcripcional , Rayos Ultravioleta , Proteínas Virales/metabolismo
2.
Nucleic Acids Res ; 44(14): 6625-38, 2016 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-27378773

RESUMEN

Transcriptional interference (TI), where transcription from a promoter is inhibited by the activity of other promoters in its vicinity on the same DNA, enables transcription factors to regulate a target promoter indirectly, inducing or relieving TI by controlling the interfering promoter. For convergent promoters, stochastic simulations indicate that relief of TI can be inhibited if the repressor at the interfering promoter has slow binding kinetics, making it either sensitive to frequent dislodgement by elongating RNA polymerases (RNAPs) from the target promoter, or able to be a strong roadblock to these RNAPs. In vivo measurements of relief of TI by CI or Cro repressors in the bacteriophage λ PR-PRE system show strong relief of TI and a lack of dislodgement and roadblocking effects, indicative of rapid CI and Cro binding kinetics. However, repression of the same λ promoter by a catalytically dead CRISPR Cas9 protein gave either compromised or no relief of TI depending on the orientation at which it binds DNA, consistent with dCas9 being a slow kinetics repressor. This analysis shows how the intrinsic properties of a repressor can be evolutionarily tuned to set the magnitude of relief of TI.


Asunto(s)
Regiones Promotoras Genéticas , Proteínas Represoras/metabolismo , Transcripción Genética , Proteínas Reguladoras y Accesorias Virales/metabolismo , Bacteriófago lambda , Proteínas Asociadas a CRISPR/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Cinética , Modelos Moleculares , Procesos Estocásticos , Factores de Transcripción/metabolismo
3.
J Biol Chem ; 289(46): 32094-32108, 2014 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-25294872

RESUMEN

The lysogeny promoting protein CII from bacteriophage 186 is a potent transcriptional activator, capable of mediating at least a 400-fold increase in transcription over basal activity. Despite being functionally similar to its counterpart in phage λ, it shows no homology at the level of protein sequence and does not belong to any known family of transcriptional activators. It also has the unusual property of binding DNA half-sites that are separated by 20 base pairs, center to center. Here we investigate the structural and functional properties of CII using a combination of genetics, in vitro assays, and mutational analysis. We find that 186 CII possesses two functional domains, with an independent activation epitope in each. 186 CII owes its potent activity to activation mechanisms that are dependent on both the σ(70) and α C-terminal domain (αCTD) components of RNA polymerase, contacting different functional domains. We also present evidence that like λ CII, 186 CII is proteolytically degraded in vivo, but unlike λ CII, 186 CII proteolysis results in a specific, transcriptionally inactive, degradation product with altered self-association properties.


Asunto(s)
Regiones Promotoras Genéticas , Factores de Transcripción/genética , Proteínas Virales/genética , Secuencia de Aminoácidos , Secuencia de Bases , Análisis Mutacional de ADN , ARN Polimerasas Dirigidas por ADN/química , Epítopos/química , Espectrometría de Masas , Modelos Genéticos , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis , Oligonucleótidos/química , Plásmidos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Factor sigma/química , Relación Estructura-Actividad , Transcripción Genética
4.
Nucleic Acids Res ; 42(14): 8861-72, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25034688

RESUMEN

Genomic DNA is bound by many proteins that could potentially impede elongation of RNA polymerase (RNAP), but the factors determining the magnitude of transcriptional roadblocking in vivo are poorly understood. Through systematic experiments and modeling, we analyse how roadblocking by the lac repressor (LacI) in Escherichia coli cells is controlled by promoter firing rate, the concentration and affinity of the roadblocker protein, the transcription-coupled repair protein Mfd, and promoter-roadblock spacing. Increased readthrough of the roadblock at higher RNAP fluxes requires active dislodgement of LacI by multiple RNAPs. However, this RNAP cooperation effect occurs only for strong promoters because roadblock-paused RNAP is quickly terminated by Mfd. The results are most consistent with a single RNAP also sometimes dislodging LacI, though we cannot exclude the possibility that a single RNAP reads through by waiting for spontaneous LacI dissociation. Reducing the occupancy of the roadblock site by increasing the LacI off-rate (weakening the operator) increased dislodgement strongly, giving a stronger effect on readthrough than decreasing the LacI on-rate (decreasing LacI concentration). Thus, protein binding kinetics can be tuned to maintain site occupation while reducing detrimental roadblocking.


Asunto(s)
Transcripción Genética , Proteínas Bacterianas/metabolismo , ADN Bacteriano/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Represoras Lac/metabolismo , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo
5.
Mol Cell ; 34(5): 545-55, 2009 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-19524535

RESUMEN

Elongating RNA polymerases (RNAPs) can interfere with transcription from downstream promoters by inhibiting DNA binding by RNAP and activators. However, combining quantitative measurement with mathematical modeling, we show that simple RNAP elongation cannot produce the strong asymmetric interference observed between a natural face-to-face promoter pair in bacteriophage lambda. Pausing of elongating polymerases over the RNAP-binding site of the downstream promoter is demonstrated in vivo and is shown by modeling to account for the increased interference. The model successfully predicts the effects on interference of treatments increasing or reducing pausing. Gene regulation by pausing-enhanced occlusion provides a general and potentially widespread mechanism by which even weak converging or tandem transcription, either coding or noncoding, can bring about strong in cis repression.


Asunto(s)
Bacteriófago lambda/genética , ARN Polimerasas Dirigidas por ADN/fisiología , Modelos Genéticos , Regiones Promotoras Genéticas , Transcripción Genética/fisiología , Sitios de Unión , Escherichia coli/genética , Regulación de la Expresión Génica , Mutación
6.
Virology ; 385(2): 303-12, 2009 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-19150106

RESUMEN

The Cox protein of the coliphage P2 is multifunctional; it acts as a transcriptional repressor of the Pc promoter, as a transcriptional activator of the P(LL) promoter of satellite phage P4, and as a directionality factor for site-specific recombination. The Cox proteins constitute a unique group of directionality factors since they couple the developmental switch with the integration or excision of the phage genome. In this work, the DNA binding characteristics of the Cox protein of WPhi, a P2-related phage, are compared with those of P2 Cox. P2 Cox has been shown to recognize a 9 bp sequence, repeated at least 6 times in different targets. In contrast to P2 Cox, WPhi Cox binds with a strong affinity to the early control region that contains an imperfect direct repeat of 12 nucleotides. The removal of one of the repeats has drastic effects on the capacity of WPhi to bind to the Pe-Pc region. Again in contrast to P2 Cox, WPhi Cox has a lower affinity to attP compared to the Pe-Pc region, and a repeat of 9 bp can be found that has 5 bp in common with the repeat in the Pe-Pc region. WPhi Cox, however, is essential for excisive recombination in vitro. WPhi Cox, like P2 Cox, binds cooperatively with integrase to attP. Both Cox proteins induce a strong bend in their DNA targets upon binding.


Asunto(s)
Bacteriófago P2/genética , Bacteriófago P2/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Virales/metabolismo , Integración Viral , Sitios de Ligazón Microbiológica/fisiología , Bacteriófago P2/inmunología , ADN Viral/genética , ADN Viral/metabolismo , Proteínas de Unión al ADN/genética , Unión Proteica , Proteínas Virales/genética
7.
Nucleic Acids Res ; 35(10): 3167-80, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17485481

RESUMEN

Bacteriophages P2 and WPhi are heteroimmune members of the P2-like family of temperate Escherichia coli phages. Temperate phages can grow lytically or form lysogeny after infection. A transcriptional switch that contains two con-vergent promoters, Pe and Pc, and two repressors regulate what life mode to enter. The immunity repressor C is the first gene of the lysogenic operon, and it blocks the early Pe promoter. In this work, some characteristics of the C proteins of P2 and WPhi are compared. An in vivo genetic analysis shows that WPhi C, like P2 C, has a strong dimerization activity in the absence of its DNA target. Both C proteins recognize two directly repeated sequences, termed half-sites and a strong bending is induced in the respective DNA target upon binding. P2 C is unable to bind to one half-site as opposed to WPhi, but both half-sites are required for repression of WPhi Pe. A reduction from three to two helical turns between the centers of the half-sites in WPhi has no significant effect on the capacity to repress Pe. However, the protein-DNA complexes formed differ, as determined by electrophoretic mobility shift experiments. A difference in spontaneous phage production is observed in isogenic lysogens.


Asunto(s)
Bacteriófago P2/genética , Colifagos/genética , Regiones Operadoras Genéticas , Proteínas Represoras/metabolismo , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Bacteriófago P2/crecimiento & desarrollo , Sitios de Unión , Colifagos/crecimiento & desarrollo , ADN/química , ADN/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Dimerización , Regulación Viral de la Expresión Génica , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas , Proteínas Represoras/química , Proteínas Virales/química
8.
Virology ; 332(1): 284-94, 2005 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-15661160

RESUMEN

Bacteriophage P2 integrase (Int) mediates site-specific recombination leading to integration or excision of the phage genome in or out of the bacterial chromosome. Int belongs to the large family of tyrosine recombinases that have two different DNA recognition motifs binding to the arm and core sites, respectively, which are located within the phage attachment sites (attP). In addition to the P2 integrase, the accessory proteins Escherichia coli IHF and P2 Cox are needed for recombination. IHF is a structural protein needed for integration and excision by bending the DNA. As opposed to lambda, only one IHF site is found in P2 attP. P2 Cox controls the direction of recombination by inhibiting integration but being required for excision. In this work, the effects of accessory proteins on the capacity of Int to bind to its DNA recognition sequences are analyzed using electromobility shifts. P2 Int binds with low affinity to the arm site, and this binding is greatly enhanced by IHF. The arm binding domain of Int is located at the N-terminus. P2 Int binds with high affinity to the core site, and this binding is also enhanced by IHF. The fact that the cooperative binding of Int and IHF is strongly reduced by lengthening the distance between the IHF and core binding sites indicates that the distance between these sites may be important for cooperative binding. The Int and Cox proteins also bind cooperatively to attP.


Asunto(s)
Bacteriófago P2/enzimología , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/virología , Integrasas/metabolismo , Factores de Integración del Huésped/metabolismo , Proteínas Virales/metabolismo , Bacteriófago P2/genética , Bacteriófago P2/metabolismo , Sitios de Unión , Escherichia coli/metabolismo , Integración Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...