Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Res Sq ; 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38463964

RESUMEN

Self-recognition is a fundamental cellular process across evolution and forms the basis of neuronal self-avoidance1-4. Clustered protocadherins (Pcdh), comprising a large family of isoform-specific homophilic recognition molecules, play a pivotal role in neuronal self-avoidance required for mammalian brain development5-7. The probabilistic expression of different Pcdh isoforms confers unique identities upon neurons and forms the basis for neuronal processes to discriminate between self and non-self5,6,8. Whether this self-recognition mechanism exists in astrocytes, the other predominant cell type of the brain, remains unknown. Here, we report that a specific isoform in the Pcdhγ cluster, γC3, is highly enriched in human and murine astrocytes. Through genetic manipulation, we demonstrate that γC3 acts autonomously to regulate astrocyte morphogenesis in the mouse visual cortex. To determine if γC3 proteins act by promoting recognition between processes of the same astrocyte, we generated pairs of γC3 chimeric proteins capable of heterophilic binding to each other, but incapable of homophilic binding. Co-expressing complementary heterophilic binding isoform pairs in the same γC3 null astrocyte restored normal morphology. By contrast, chimeric γC3 proteins individually expressed in single γC3 null mutant astrocytes did not. These data establish that self-recognition is essential for astrocyte development in the mammalian brain and that, by contrast to neuronal self-recognition, a single Pcdh isoform is both necessary and sufficient for this process.

2.
Cell ; 186(4): 821-836.e13, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36750096

RESUMEN

The low-density lipoprotein (LDL) receptor-related protein 2 (LRP2 or megalin) is representative of the phylogenetically conserved subfamily of giant LDL receptor-related proteins, which function in endocytosis and are implicated in diseases of the kidney and brain. Here, we report high-resolution cryoelectron microscopy structures of LRP2 isolated from mouse kidney, at extracellular and endosomal pH. The structures reveal LRP2 to be a molecular machine that adopts a conformation for ligand binding at the cell surface and for ligand shedding in the endosome. LRP2 forms a homodimer, the conformational transformation of which is governed by pH-sensitive sites at both homodimer and intra-protomer interfaces. A subset of LRP2 deleterious missense variants in humans appears to impair homodimer assembly. These observations lay the foundation for further understanding the function and mechanism of LDL receptors and implicate homodimerization as a conserved feature of the LRP receptor subfamily.


Asunto(s)
Endocitosis , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad , Animales , Humanos , Ratones , Microscopía por Crioelectrón , Riñón/metabolismo , Ligandos , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo
3.
Elife ; 112022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-35253643

RESUMEN

The stochastic expression of fewer than 60 clustered protocadherin (cPcdh) isoforms provides diverse identities to individual vertebrate neurons and a molecular basis for self-/nonself-discrimination. cPcdhs form chains mediated by alternating cis and trans interactions between apposed membranes, which has been suggested to signal self-recognition. Such a mechanism requires that cPcdh cis dimers form promiscuously to generate diverse recognition units, and that trans interactions have precise specificity so that isoform mismatches terminate chain growth. However, the extent to which cPcdh interactions fulfill these requirements has not been definitively demonstrated. Here, we report biophysical experiments showing that cPcdh cis interactions are promiscuous, but with preferences favoring formation of heterologous cis dimers. Trans homophilic interactions are remarkably precise, with no evidence for heterophilic interactions between different isoforms. A new C-type cPcdh crystal structure and mutagenesis data help to explain these observations. Overall, the interaction characteristics we report for cPcdhs help explain their function in neuronal self-/nonself-discrimination.


Asunto(s)
Cadherinas , Protocadherinas , Cadherinas/metabolismo , Comunicación Celular , Neuronas/metabolismo , Isoformas de Proteínas/metabolismo
4.
Cell Rep ; 37(3): 109828, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34686348

RESUMEN

Synaptic connectivity within adult circuits exhibits a remarkable degree of cellular and subcellular specificity. We report that the axon guidance receptor Robo2 plays a role in establishing synaptic specificity in hippocampal CA1. In vivo, Robo2 is present and required postsynaptically in CA1 pyramidal neurons (PNs) for the formation of excitatory (E) but not inhibitory (I) synapses, specifically in proximal but not distal dendritic compartments. In vitro approaches show that the synaptogenic activity of Robo2 involves a trans-synaptic interaction with presynaptic Neurexins, as well as binding to its canonical extracellular ligand Slit. In vivo 2-photon Ca2+ imaging of CA1 PNs during spatial navigation in awake behaving mice shows that preventing Robo2-dependent excitatory synapse formation cell autonomously during development alters place cell properties of adult CA1 PNs. Our results identify a trans-synaptic complex linking the establishment of synaptic specificity to circuit function.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Células Piramidales/metabolismo , Receptores Inmunológicos/metabolismo , Sinapsis/metabolismo , Animales , Región CA1 Hipocampal/citología , Región CA3 Hipocampal/citología , Región CA3 Hipocampal/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Potenciales Postsinápticos Excitadores , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Moléculas de Adhesión de Célula Nerviosa/genética , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Células de Lugar/metabolismo , Receptores Inmunológicos/genética , Proteínas Roundabout
5.
Elife ; 92020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-33021200

RESUMEN

Sex-specific synaptic connectivity is beginning to emerge as a remarkable, but little explored feature of animal brains. We describe here a novel mechanism that promotes sexually dimorphic neuronal function and synaptic connectivity in the nervous system of the nematode Caenorhabditis elegans. We demonstrate that a phylogenetically conserved, but previously uncharacterized Doublesex/Mab-3 related transcription factor (DMRT), dmd-4, is expressed in two classes of sex-shared phasmid neurons specifically in hermaphrodites but not in males. We find dmd-4 to promote hermaphrodite-specific synaptic connectivity and neuronal function of phasmid sensory neurons. Sex-specificity of DMD-4 function is conferred by a novel mode of posttranslational regulation that involves sex-specific protein stabilization through ubiquitin binding to a phylogenetically conserved but previously unstudied protein domain, the DMA domain. A human DMRT homolog of DMD-4 is controlled in a similar manner, indicating that our findings may have implications for the control of sexual differentiation in other animals as well.


Asunto(s)
Proteínas de Caenorhabditis elegans , Neuronas/metabolismo , Caracteres Sexuales , Factores de Transcripción , Ubiquitina/metabolismo , Animales , Conducta Animal , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Trastornos del Desarrollo Sexual , Femenino , Técnicas de Inactivación de Genes , Humanos , Masculino , Transmisión Sináptica/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Nat Commun ; 11(1): 2125, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32358559

RESUMEN

Differential binding affinities among closely related protein family members underlie many biological phenomena, including cell-cell recognition. Drosophila DIP and Dpr proteins mediate neuronal targeting in the fly through highly specific protein-protein interactions. We show here that DIPs/Dprs segregate into seven specificity subgroups defined by binding preferences between their DIP and Dpr members. We then describe a sequence-, structure- and energy-based computational approach, combined with experimental binding affinity measurements, to reveal how specificity is coded on the canonical DIP/Dpr interface. We show that binding specificity of DIP/Dpr subgroups is controlled by "negative constraints", which interfere with binding. To achieve specificity, each subgroup utilizes a different combination of negative constraints, which are broadly distributed and cover the majority of the protein-protein interface. We discuss the structural origins of negative constraints, and potential general implications for the evolutionary origins of binding specificity in multi-protein families.


Asunto(s)
Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Secuencia de Aminoácidos , Animales , Evolución Biológica , Drosophila , Proteínas de Drosophila/genética , Evolución Molecular , Estructura Secundaria de Proteína , Análisis de Secuencia de Proteína
7.
Cell Rep ; 30(8): 2655-2671.e7, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32101743

RESUMEN

Non-clustered δ1- and δ2-protocadherins, close relatives of clustered protocadherins, function in cell adhesion and motility and play essential roles in neural patterning. To understand the molecular interactions underlying these functions, we used solution biophysics to characterize binding of δ1- and δ2-protocadherins, determined crystal structures of ectodomain complexes from each family, and assessed ectodomain assembly in reconstituted intermembrane junctions by cryoelectron tomography (cryo-ET). Homophilic trans (cell-cell) interactions were preferred for all δ-protocadherins, with additional weaker heterophilic interactions observed exclusively within each subfamily. As expected, δ1- and δ2-protocadherin trans dimers formed through antiparallel EC1-EC4 interfaces, like clustered protocadherins. However, no ectodomain-mediated cis (same-cell) interactions were detectable in solution; consistent with this, cryo-ET of reconstituted junctions revealed dense assemblies lacking the characteristic order observed for clustered protocadherins. Our results define non-clustered protocadherin binding properties and their structural basis, providing a foundation for interpreting their functional roles in neural patterning.


Asunto(s)
Fenómenos Biofísicos , Cadherinas/química , Cadherinas/metabolismo , Animales , Cadherinas/genética , Secuencia Conservada , Femenino , Células HEK293 , Humanos , Cinética , Liposomas , Modelos Moleculares , Mutación/genética , Unión Proteica , Dominios Proteicos , Multimerización de Proteína , Soluciones , Relación Estructura-Actividad , Resonancia por Plasmón de Superficie , Xenopus
8.
Proc Natl Acad Sci U S A ; 116(49): 24517-24526, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31748271

RESUMEN

Exonic DNA sequence variants in the Tbk1 gene associate with both sporadic and familial amyotrophic lateral sclerosis (ALS). Here, we examine functional defects in 25 missense TBK1 mutations, focusing on kinase activity and protein-protein interactions. We identified kinase domain (KD) mutations that abolish kinase activity or display substrate-specific defects in specific pathways, such as innate immunity and autophagy. By contrast, mutations in the scaffold dimerization domain (SDD) of TBK1 can cause the loss of kinase activity due to structural disruption, despite an intact KD. Familial ALS mutations in ubiquitin-like domain (ULD) or SDD display defects in dimerization; however, a subset retains kinase activity. These observations indicate that TBK1 dimerization is not required for kinase activation. Rather, dimerization seems to increase protein stability and enables efficient kinase-substrate interactions. Our study revealed many aspects of TBK1 activities affected by ALS mutations, highlighting the complexity of disease pathogenicity and providing insights into TBK1 activation mechanism.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Mutación Missense , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Esclerosis Amiotrófica Lateral/enzimología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Activación Enzimática , Humanos , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Fosforilación , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas/genética , Multimerización de Proteína , Proteínas Serina-Treonina Quinasas/química , Estabilidad Proteica , Serina/metabolismo , Especificidad por Sustrato
9.
Neuron ; 100(6): 1369-1384.e6, 2018 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-30467079

RESUMEN

Drosophila Dpr (21 paralogs) and DIP proteins (11 paralogs) are cell recognition molecules of the immunoglobulin superfamily (IgSF) that form a complex protein interaction network. DIP and Dpr proteins are expressed in a synaptic layer-specific fashion in the visual system. How interactions between these proteins regulate layer-specific synaptic circuitry is not known. Here we establish that DIP-α and its interacting partners Dpr6 and Dpr10 regulate multiple processes, including arborization within layers, synapse number, layer specificity, and cell survival. We demonstrate that heterophilic binding between Dpr6/10 and DIP-α and homophilic binding between DIP-α proteins promote interactions between processes in vivo. Knockin mutants disrupting the DIP/Dpr binding interface reveal a role for these proteins during normal development, while ectopic expression studies support an instructive role for interactions between DIPs and Dprs in circuit development. These studies support an important role for the DIP/Dpr protein interaction network in regulating cell-type-specific connectivity patterns.


Asunto(s)
Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Neurópilo/metabolismo , Factores de Transcripción/metabolismo , Animales , Animales Modificados Genéticamente , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/fisiología , Drosophila , Proteínas de Drosophila/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Bulbo Raquídeo/citología , Bulbo Raquídeo/crecimiento & desarrollo , Mutación/genética , Mapas de Interacción de Proteínas , Resonancia por Plasmón de Superficie , Factores de Transcripción/genética , Transfección , Vías Visuales/metabolismo
10.
Neuron ; 100(6): 1385-1400.e6, 2018 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-30467080

RESUMEN

Binding between DIP and Dpr neuronal recognition proteins has been proposed to regulate synaptic connections between lamina and medulla neurons in the Drosophila visual system. Each lamina neuron was previously shown to express many Dprs. Here, we demonstrate, by contrast, that their synaptic partners typically express one or two DIPs, with binding specificities matched to the lamina neuron-expressed Dprs. A deeper understanding of the molecular logic of DIP/Dpr interaction requires quantitative studies on the properties of these proteins. We thus generated a quantitative affinity-based DIP/Dpr interactome for all DIP/Dpr protein family members. This revealed a broad range of affinities and identified homophilic binding for some DIPs and some Dprs. These data, along with full-length ectodomain DIP/Dpr and DIP/DIP crystal structures, led to the identification of molecular determinants of DIP/Dpr specificity. This structural knowledge, along with a comprehensive set of quantitative binding affinities, provides new tools for functional studies in vivo.


Asunto(s)
Proteínas de Drosophila/metabolismo , Bulbo Raquídeo/citología , Neuronas/metabolismo , Vías Visuales/citología , Animales , Animales Modificados Genéticamente , Comunicación Celular , Proteínas de Drosophila/genética , Drosophila melanogaster , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Unión Proteica , Resonancia por Plasmón de Superficie , Transfección
11.
Neuron ; 99(3): 480-492.e5, 2018 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-30057206

RESUMEN

The tip link, a filament formed by protocadherin 15 (PCDH15) and cadherin 23, conveys mechanical force from sound waves and head movement to open hair-cell mechanotransduction channels. Tip-link cadherins are thought to have acquired structural features critical for their role in mechanotransduction. Here, we biophysically and structurally characterize the unusual cis-homodimeric architecture of PCDH15. We show that PCDH15 molecules form double-helical assemblies through cis-dimerization interfaces in the extracellular cadherin EC2-EC3 domain region and in a unique membrane-proximal domain. Electron microscopy studies visualize the cis-dimeric PCDH15 assembly and reveal the PCDH15 extracellular domain as a parallel double helix with cis cross-bridges at the two locations we defined. The helical configuration suggests the potential for elasticity through helix winding and unwinding. Functional studies in hair cells show that mutations that perturb PCDH15 dimerization contacts affect mechanotransduction. Together, these data reveal the cis-dimeric architecture of PCDH15 and show that dimerization is critical for sensing mechanical stimuli.


Asunto(s)
Cadherinas/química , Cadherinas/fisiología , Mecanotransducción Celular/fisiología , Multimerización de Proteína/fisiología , Animales , Proteínas Relacionadas con las Cadherinas , Cristalización/métodos , Células HEK293 , Humanos , Ratones , Ratones Transgénicos , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
12.
Cell Rep ; 23(6): 1840-1852, 2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29742438

RESUMEN

Type II cadherins are cell-cell adhesion proteins critical for tissue patterning and neuronal targeting but whose molecular binding code remains poorly understood. Here, we delineate binding preferences for type II cadherin cell-adhesive regions, revealing extensive heterophilic interactions between specific pairs, in addition to homophilic interactions. Three distinct specificity groups emerge from our analysis with members that share highly similar heterophilic binding patterns and favor binding to one another. Structures of adhesive fragments from each specificity group confirm near-identical dimer topology conserved throughout the family, allowing interface residues whose conservation corresponds to specificity preferences to be identified. We show that targeted mutation of these residues converts binding preferences between specificity groups in biophysical and co-culture assays. Our results provide a detailed understanding of the type II cadherin interaction map and a basis for defining their role in tissue patterning and for the emerging importance of their heterophilic interactions in neural connectivity.


Asunto(s)
Cadherinas/metabolismo , Secuencia de Aminoácidos , Animales , Cadherinas/química , Adhesión Celular , Línea Celular , Secuencia Conservada , Análisis Mutacional de ADN , Humanos , Ratones , Mutación/genética , Filogenia , Unión Proteica , Multimerización de Proteína
13.
Proc Natl Acad Sci U S A ; 114(46): E9829-E9837, 2017 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-29087338

RESUMEN

Clustered protocadherins (Pcdhs) mediate numerous neural patterning functions, including neuronal self-recognition and non-self-discrimination to direct self-avoidance among vertebrate neurons. Individual neurons stochastically express a subset of Pcdh isoforms, which assemble to form a stochastic repertoire of cis-dimers. We describe the structure of a PcdhγB7 cis-homodimer, which includes the membrane-proximal extracellular cadherin domains EC5 and EC6. The structure is asymmetric with one molecule contributing interface surface from both EC5 and EC6, and the other only from EC6. Structural and sequence analyses suggest that all Pcdh isoforms will dimerize through this interface. Site-directed mutants at this interface interfere with both Pcdh cis-dimerization and cell surface transport. The structure explains the known restrictions of cis-interactions of some Pcdh isoforms, including α-Pcdhs, which cannot form homodimers. The asymmetry of the interface approximately doubles the size of the recognition repertoire, and restrictions on cis-interactions among Pcdh isoforms define the limits of the Pcdh recognition unit repertoire.


Asunto(s)
Cadherinas/química , Cadherinas/metabolismo , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Secuencia de Aminoácidos , Animales , Cadherinas/genética , Cristalografía por Rayos X , Células HEK293 , Humanos , Ratones , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Neuronas/metabolismo , Isoformas de Proteínas/genética , Multimerización de Proteína , Alineación de Secuencia , Análisis de Secuencia de Proteína
14.
Elife ; 52016 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-27782885

RESUMEN

Stochastic cell-surface expression of α-, ß-, and γ-clustered protocadherins (Pcdhs) provides vertebrate neurons with single-cell identities that underlie neuronal self-recognition. Here we report crystal structures of ectodomain fragments comprising cell-cell recognition regions of mouse γ-Pcdhs γA1, γA8, γB2, and γB7 revealing trans-homodimers, and of C-terminal ectodomain fragments from γ-Pcdhs γA4 and γB2, which depict cis-interacting regions in monomeric form. Together these structures span the entire γ-Pcdh ectodomain. The trans-dimer structures reveal determinants of γ-Pcdh isoform-specific homophilic recognition. We identified and structurally mapped cis-dimerization mutations to the C-terminal ectodomain structures. Biophysical studies showed that Pcdh ectodomains from γB-subfamily isoforms formed cis dimers, whereas γA isoforms did not, but both γA and γB isoforms could interact in cis with α-Pcdhs. Together, these data show how interaction specificity is distributed over all domains of the γ-Pcdh trans interface, and suggest that subfamily- or isoform-specific cis-interactions may play a role in the Pcdh-mediated neuronal self-recognition code.


Asunto(s)
Cadherinas/química , Cadherinas/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Animales , Proteínas Relacionadas con las Cadherinas , Cristalografía por Rayos X , Ratones , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína
15.
Elife ; 52016 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-27644106

RESUMEN

Sidekick (Sdk) 1 and 2 are related immunoglobulin superfamily cell adhesion proteins required for appropriate synaptic connections between specific subtypes of retinal neurons. Sdks mediate cell-cell adhesion with homophilic specificity that underlies their neuronal targeting function. Here we report crystal structures of Sdk1 and Sdk2 ectodomain regions, revealing similar homodimers mediated by the four N-terminal immunoglobulin domains (Ig1-4), arranged in a horseshoe conformation. These Ig1-4 horseshoes interact in a novel back-to-back orientation in both homodimers through Ig1:Ig2, Ig1:Ig1 and Ig3:Ig4 interactions. Structure-guided mutagenesis results show that this canonical dimer is required for both Sdk-mediated cell aggregation (via trans interactions) and Sdk clustering in isolated cells (via cis interactions). Sdk1/Sdk2 recognition specificity is encoded across Ig1-4, with Ig1-2 conferring the majority of binding affinity and differential specificity. We suggest that competition between cis and trans interactions provides a novel mechanism to sharpen the specificity of cell-cell interactions.


Asunto(s)
Adhesión Celular , Inmunoglobulina G/química , Inmunoglobulina G/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Neuronas/fisiología , Retina/fisiología , Cristalografía por Rayos X , Análisis Mutacional de ADN , Inmunoglobulina G/genética , Proteínas de la Membrana/genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Conformación Proteica , Multimerización de Proteína
16.
Proc Natl Acad Sci U S A ; 113(26): 7160-5, 2016 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-27298358

RESUMEN

Desmosomes are intercellular adhesive junctions that impart strength to vertebrate tissues. Their dense, ordered intercellular attachments are formed by desmogleins (Dsgs) and desmocollins (Dscs), but the nature of trans-cellular interactions between these specialized cadherins is unclear. Here, using solution biophysics and coated-bead aggregation experiments, we demonstrate family-wise heterophilic specificity: All Dsgs form adhesive dimers with all Dscs, with affinities characteristic of each Dsg:Dsc pair. Crystal structures of ectodomains from Dsg2 and Dsg3 and from Dsc1 and Dsc2 show binding through a strand-swap mechanism similar to that of homophilic classical cadherins. However, conserved charged amino acids inhibit Dsg:Dsg and Dsc:Dsc interactions by same-charge repulsion and promote heterophilic Dsg:Dsc interactions through opposite-charge attraction. These findings show that Dsg:Dsc heterodimers represent the fundamental adhesive unit of desmosomes and provide a structural framework for understanding desmosome assembly.


Asunto(s)
Adhesivos/química , Desmocolinas/química , Desmogleínas/química , Adhesivos/metabolismo , Desmocolinas/metabolismo , Desmogleínas/metabolismo , Dimerización , Humanos , Cinética , Conformación Proteica
17.
Neuron ; 90(4): 709-23, 2016 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-27161523

RESUMEN

Clustered protocadherin proteins (α-, ß-, and γ-Pcdhs) provide a high level of cell-surface diversity to individual vertebrate neurons, engaging in highly specific homophilic interactions to mediate important roles in mammalian neural circuit development. How Pcdhs bind homophilically through their extracellular cadherin (EC) domains among dozens of highly similar isoforms has not been determined. Here, we report crystal structures for extracellular regions from four mouse Pcdh isoforms (α4, α7, ß6, and ß8), revealing a canonical head-to-tail interaction mode for homophilic trans dimers comprising primary intermolecular EC1:EC4 and EC2:EC3 interactions. A subset of trans interface residues exhibit isoform-specific conservation, suggesting roles in recognition specificity. Mutation of these residues, along with trans-interacting partner residues, altered the specificities of Pcdh interactions. Together, these data show how sequence variation among Pcdh isoforms encodes their diverse strict homophilic recognition specificities, which are required for their key roles in neural circuit assembly.


Asunto(s)
Secuencia de Aminoácidos/fisiología , Cadherinas/química , Cadherinas/metabolismo , Neuronas/metabolismo , Células Cultivadas , Humanos , Red Nerviosa/metabolismo , Unión Proteica/fisiología , Dominios y Motivos de Interacción de Proteínas , Isoformas de Proteínas/metabolismo
18.
Cell ; 163(3): 629-42, 2015 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-26478182

RESUMEN

Self-avoidance, a process preventing interactions of axons and dendrites from the same neuron during development, is mediated in vertebrates through the stochastic single-neuron expression of clustered protocadherin protein isoforms. Extracellular cadherin (EC) domains mediate isoform-specific homophilic binding between cells, conferring cell recognition through a poorly understood mechanism. Here, we report crystal structures for the EC1-EC3 domain regions from four protocadherin isoforms representing the α, ß, and γ subfamilies. All are rod shaped and monomeric in solution. Biophysical measurements, cell aggregation assays, and computational docking reveal that trans binding between cells depends on the EC1-EC4 domains, which interact in an antiparallel orientation. We also show that the EC6 domains are required for the formation of cis-dimers. Overall, our results are consistent with a model in which protocadherin cis-dimers engage in a head-to-tail interaction between EC1-EC4 domains from apposed cell surfaces, possibly forming a zipper-like protein assembly, and thus providing a size-dependent self-recognition mechanism.


Asunto(s)
Cadherinas/química , Cadherinas/metabolismo , Neuronas/citología , Neuronas/fisiología , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Fenómenos Fisiológicos del Sistema Nervioso , Estructura Terciaria de Proteína , Alineación de Secuencia
19.
Nat Struct Mol Biol ; 22(7): 522-31, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26098315

RESUMEN

As the sole viral antigen on the HIV-1-virion surface, trimeric Env is a focus of vaccine efforts. Here we present the structure of the ligand-free HIV-1-Env trimer, fix its conformation and determine its receptor interactions. Epitope analyses revealed trimeric ligand-free Env to be structurally compatible with broadly neutralizing antibodies but not poorly neutralizing ones. We coupled these compatibility considerations with binding antigenicity to engineer conformationally fixed Envs, including a 201C 433C (DS) variant specifically recognized by broadly neutralizing antibodies. DS-Env retained nanomolar affinity for the CD4 receptor, with which it formed an asymmetric intermediate: a closed trimer bound by a single CD4 without the typical antigenic hallmarks of CD4 induction. Antigenicity-guided structural design can thus be used both to delineate mechanism and to fix conformation, with DS-Env trimers in virus-like-particle and soluble formats providing a new generation of vaccine antigens.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/inmunología , VIH-1/fisiología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/química , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Antígenos CD4/inmunología , Cristalografía por Rayos X , Epítopos/inmunología , Células HEK293 , Infecciones por VIH/virología , VIH-1/química , VIH-1/inmunología , Humanos , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína , Internalización del Virus
20.
Proc Natl Acad Sci U S A ; 111(40): E4175-84, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25253890

RESUMEN

Type I cadherin cell-adhesion proteins are similar in sequence and structure and yet are different enough to mediate highly specific cell-cell recognition phenomena. It has previously been shown that small differences in the homophilic and heterophilic binding affinities of different type I family members can account for the differential cell-sorting behavior. Here we use a combination of X-ray crystallography, analytical ultracentrifugation, surface plasmon resonance and double electron-electron resonance (DEER) electron paramagnetic resonance spectroscopy to identify the molecular determinants of type I cadherin dimerization affinities. Small changes in sequence are found to produce subtle structural and dynamical changes that impact relative affinities, in part via electrostatic and hydrophobic interactions, and in part through entropic effects because of increased conformational heterogeneity in the bound states as revealed by DEER distance mapping in the dimers. These findings highlight the remarkable ability of evolution to exploit a wide range of molecular properties to produce closely related members of the same protein family that have affinity differences finely tuned to mediate their biological roles.


Asunto(s)
Cadherinas/química , Multimerización de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Secuencia de Aminoácidos , Animales , Unión Competitiva , Cadherinas/genética , Cadherinas/metabolismo , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Unión Proteica , Homología de Secuencia de Aminoácido , Electricidad Estática , Xenopus , Proteínas de Xenopus/química , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...