Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Heliyon ; 10(7): e28635, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38586366

RESUMEN

Cedrus deodara is the central conifer plant affected by ozone and nitrogen pollutants among forest species worldwide. The growth of C. deodara depends upon the ectomycorrhizal (ECM) association, which is usually disturbed by these factors. This study aims to understand how these factors affect plants at physiological and biochemical levels. Three fungal strain consortiums were inoculated with two-year-old C. deodara seedlings. The stresses of 100 kg N h-1and 100 ppb O3 were applied for six months to study their impact on chlorophyll and antioxidant enzymes (SOD, CAT, and APX). The results showed that C2 (Consortium of Cedrus deodara) positively impacted the growth of selected plant species. The high photosynthesis rate was determined by enhanced chlorophyll content, and C2-treated plants showed high chlorophyll content. Relatively, chlorophyll a and b contents increased significantly in the seedlings treated with Ethylenediurea (EDU) alone and with ozone stress. In addition, a significant difference was observed between EDU and O3-treated plants (14% EDU400-O3 and 23% EDU600-O3) and the control. Overall, antioxidant activities were higher in the treated samples than in the control. The order of SOD activity was C2 (448 U/gFW) and lowest (354.7 U/gFW) in control. APX also showed higher activity in treated plants in C1 ≥ C2 ≥ C3+O3, whereas CAT activity was the highest in C2 treatments. Ozone and nitrogen-stressed plants showed higher activities than EDU-treated plants compared to non-treated ones. Our findings highlight the importance of understanding the signaling effects of numerous precursors. Moreover, an extended investigation of seedlings developing into trees must be conducted to verify the potential of ectomycorrhizal strains associated with C. deodara and comprehend EDU's role as a direct molecular scavenger of reactive toxicants.

2.
Nanomaterials (Basel) ; 14(8)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38668200

RESUMEN

Nitrite monitoring serves as a fundamental practice for protecting public health, preserving environmental quality, ensuring food safety, maintaining industrial safety standards, and optimizing agricultural practices. Although many nitrite sensing methods have been recently developed, the quantification of nitrite remains challenging due to sensitivity and selectivity limitations. In this context, we present the fabrication of enzymeless iron oxide nanoparticle-modified zinc oxide nanorod (α-Fe2O3-ZnO NR) hybrid nanostructure-based nitrite sensor fabrication. The α-Fe2O3-ZnO NR hybrid nanostructure was synthesized using a two-step hydrothermal method and characterized in detail utilizing x-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). These analyses confirm the successful synthesis of an α-Fe2O3-ZnO NR hybrid nanostructure, highlighting its morphology, purity, crystallinity, and elemental constituents. The α-Fe2O3-ZnO NR hybrid nanostructure was used to modify the SPCE (screen-printed carbon electrode) for enzymeless nitrite sensor fabrication. The voltammetric methods (i.e., cyclic voltammetry (CV) and differential pulse voltammetry (DPV)) were employed to explore the electrochemical characteristics of α-Fe2O3-ZnO NR/SPCE sensors for nitrite. Upon examination of the sensor's electrochemical behavior across a range of nitrite concentrations (0 to 500 µM), it is evident that the α-Fe2O3-ZnO NR hybrid nanostructure shows an increased response with increasing nitrite concentration. The sensor demonstrates a linear response to nitrite concentrations up to 400 µM, a remarkable sensitivity of 18.10 µA µM-1 cm-2, and a notably low detection threshold of 0.16 µM. Furthermore, its exceptional selectivity, stability, and reproducibility make it an ideal tool for accurately measuring nitrite levels in serum, yielding reliable outcomes. This advancement heralds a significant step forward in the field of environmental monitoring, offering a potent solution for the precise assessment of nitrite pollution.

3.
Animals (Basel) ; 14(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38672313

RESUMEN

The purpose of this study was to assess the impact of various concentrations of Bacillus licheniformis-fermented products (BLFP) on the growth and productivity of laying ducks (Anas platyrhynchos) subjected to heat stress during eight weeks of a feeding trial. A total of 150 one-day-old Brown Tsaiya ducks of both sexes were divided into five groups, with each group having three replicates and 10 ducks each for evaluation of growth performance. The treatment groups received dietary supplements of BLFP at levels of 0.1%, 0.2%, and 0.3%, along with a group receiving flavomycin (F) at 5 ppm, all over a 24-week period. The fermentation process in this study utilized a B. licheniformis strain (ATCC 12713) for the production of the spores through solid-state fermentation. The control group was given a basal diet consisting of yellow corn and soybean meal. The results showed that as compared to the flavomycin group, ducks in the 0.3% BLFP group had significantly higher body weights and better feed conversion rates. In addition, during the three weeks, the BLFP group showed higher feed consumption as compared to the control group. The jejunum villi length was significantly increased in the 0.2% BLPF group as compared to the control and flavomycin groups. This study also found that the flavomycin group had a significantly higher egg conversion rate, while the 0.1-0.3% BLFP groups had improved feed intake and the 0.3% group had significantly enhanced egg yolk color. Additionally, the 0.2% BLFP group showed substantial decreases in IL-1ß, TNF-α, IL-6, and IL-10 levels in the liver as well as an uptick in the tight junction protein Occludin gene expression in the colon when compared to the control group. Furthermore, the expression of the heat shock protein 70 in the gut upregulated in the 0.1% and 0.2% BLFP groups. In conclusion, these observations demonstrate that dietary supplementation of 0.2% BLFP is an ideal concentration to increase gut morphology, alleviate inflammatory response, and promote gut integrity in heat-stressed laying ducks.

4.
Life (Basel) ; 14(4)2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38672805

RESUMEN

Wheat (Triticum aestivum L.) is an essential food crop in terms of consumption as well as production. Aflatoxin exposure has a widespread public health impact in economically developing nations, so there is a need to establish preventive techniques for these high-risk populations. Pre-harvest and post-harvest practices are the two strategies used to control aflatoxin contamination, which include the use of genetically modified crops that show resistance against Aspergillus infection, the use of pesticides, changing the planting and harvesting time of crops, and physical, chemical, and biological methods. In this research, aflatoxin detection and quantification were performed in different wheat varieties to determine quantitative differences in comparison to the European Commission's limit of 4 ppb aflatoxins in wheat. TLC for qualitative and the ELISA kit method for quantitative analysis of aflatoxins were used. Out of 56 samples, 35 were found contaminated with aflatoxins, while the remaining 21 samples did not show any presence of aflatoxins. Out of the 35 contaminated samples, 20 samples showed aflatoxin contamination within the permissible limit, while the remaining 15 samples showed aflatoxin concentration beyond the permissible level, ranging from 0.49 to 20.56 ppb. After quantification, the nine highly contaminated wheat samples were detoxified using physical, chemical, and biological methods. The efficiency of these methods was assessed, and they showed a significant reduction in aflatoxins of 53-72%, 79-88%, and 80-88%, respectively. In conclusion, the difference in aflatoxin concentration in different wheat varieties could be due to genetic variations. Furthermore, biological treatment could be the method of choice for detoxification of aflatoxins in wheat as it greatly reduced the aflatoxin concentration with no harmful effect on the quality of the grains.

5.
Mar Pollut Bull ; 202: 116273, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38569302

RESUMEN

Coral reefs are home to a variety of species, and their preservation is a popular study area; however, monitoring them is a significant challenge, for which the use of robots offers a promising answer. The purpose of this study is to analyze the current techniques and tools employed in coral reef monitoring, with a focus on the role of robotics and its potential in transforming this sector. Using a systematic review methodology examining peer-reviewed literature across engineering and earth sciences from the Scopus database focusing on "robotics" and "coral reef" keywords, the article is divided into three sections: coral reef monitoring, robots in coral reef monitoring, and case studies. The initial findings indicated a variety of monitoring strategies, each with its own advantages and disadvantages. Case studies have also highlighted the global application of robotics in monitoring, emphasizing the challenges and opportunities unique to each context. Robotic interventions driven by artificial intelligence and machine learning have led to a new era in coral reef monitoring. Such developments not only improve monitoring but also support the conservation and restoration of these vulnerable ecosystems. Further research is required, particularly on robotic systems for monitoring coral nurseries and maximizing coral health in both indoor and open-sea settings.


Asunto(s)
Antozoos , Arrecifes de Coral , Monitoreo del Ambiente , Robótica , Monitoreo del Ambiente/métodos , Animales , Conservación de los Recursos Naturales/métodos , Ecosistema
6.
Sci Rep ; 14(1): 7333, 2024 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538706

RESUMEN

Application of machine learning in plant breeding is a recent concept, that has to be optimized for precise utilization in the breeding program of high yielding crop plants. Identification and efficient utilization of heterotic grouping pattern aided with machine learning approaches is of utmost importance in hybrid cultivar breeding as it can save time and resources required to breed a new plant hybrid/variety. In the present study, 109 genotypes of sunflower were investigated at morphological, biochemical (SDS-PAGE) and molecular levels (through micro-satellites (SSR) markers) for heterotic grouping. All the three datasets were combined, scaled, and subjected to unsupervised machine learning algorithms, i.e., Hierarchical clustering, K-means clustering and hybrid clustering algorithm (hierarchical + K-means) for assessment of efficiency and resolution power of these algorithms in practical plant breeding for heterotic grouping identification. Following the application of machine learning unsupervised clustering approach, two major groups were identified in the studied sunflower germplasm, and further classification revealed six smaller classes in each major group through hierarchical and hybrid clustering approach. Due to high resolution, obtained in hierarchical clustering, classification achieved through this algorithm was further used for selection of potential parents. One genotype from each smaller group was selected based on the maximum seed yield potential and hybridized in a line × tester mating design producing 36 F1 cross combinations. These F1s along with their parents were studied in open field conditions for validating the efficacy of identified heterotic groups in sunflowers genetic material under study. Data for 11 agronomic and qualitative traits were recorded. These 36 F1 combinations were tested for their combining ability (General/Specific), heterosis, genotypic and phenotypic correlation and path analysis. Results suggested that F1 hybrids performed better for all the traits under investigation than their respective parents. Findings of the study validated the use of machine learning approaches in practical plant breeding; however, more accurate and robust clustering algorithms need to be developed to handle the data noisiness of open field experiments.


Asunto(s)
Asteraceae , Helianthus , Vigor Híbrido , Hibridación Genética , Helianthus/genética , Genotipo , Fitomejoramiento , Aprendizaje Automático
7.
Waste Manag ; 178: 144-154, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38401428

RESUMEN

A material recovery facility (MRF) can transform municipal solid waste (MSW) into a valued commodity called refuse-derived fuel (RDF) as a promising solution to waste-to-energy conversion. The quality of the produced RDF significantly relies on the composition of in-feed waste and waste characterization method applied for auditing purposes, a process that is both time-consuming and fraught with potential hazards. This study focuses to enhance the workflow of the waste characterization process at an MRF. A solution named Smart Sight is proposed to detect and classify waste based on videos recorded after processing MSW through a mechanical sorting line consisting of bag breakers and trommel screens. A comprehensive dataset is created encompassing thirteen mixed waste classes from single and multi-family streams. The dataset is preprocessed with motion compensation techniques and frame differencing methods to extract and refine valuable frames. A one-stage YOLO detector model is then trained over the dataset. The experimental results show that the proposed method works efficiently at detecting and classifying waste objects in indoor MRF environments. Accuracy, precision, recall, and F1 score related to the proposed solution are found to be 0.70, 0.762, 0.69 and 0.72, respectively, with a mAP@0.5 of 0.716. The proposed approach is validated using data collected from local MRF by comparing the estimated waste composition values of the proposed solution with laboratory results obtained through current standardized industrial practices. Comparison reveals that waste characterization estimation obtained is consistent with the laboratory results, inferring that Smart-Sight is a viable tool for estimating waste composition.


Asunto(s)
Residuos de Alimentos , Eliminación de Residuos , Eliminación de Residuos/métodos , Residuos Sólidos/análisis
8.
Anim Biosci ; 37(1): 1-15, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37641827

RESUMEN

Poultry coccidiosis is an intestinal infection caused by an intracellular parasitic protozoan of the genus Eimeria. Coccidia-induced gastrointestinal inflammation results in large economic losses, hence finding methods to decrease its prevalence is critical for industry participants and academic researchers. It has been demonstrated that coccidiosis can be effectively controlled and managed by employing anticoccidial chemical compounds. However, as a result of their extensive use, anticoccidial drug resistance in Eimeria species has raised concerns. Phytochemical/herbal medicines (Artemisia annua, Bidens pilosa, and garlic) seem to be a promising strategy for preventing coccidiosis, in accordance with the "anticoccidial chemical-free" standards. The impact of herbal supplements on poultry coccidiosis is based on the reduction of oocyst output by preventing the proliferation and growth of Eimeria species in chicken gastrointestinal tissues and lowering intestinal permeability via increased epithelial turnover. This review provides a thorough up-to-date assessment of the state of the art and technologies in the prevention and treatment of coccidiosis in chickens, including the most used phytochemical medications, their mode of action, and the applicable legal framework in the European Union.

9.
Sensors (Basel) ; 23(24)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38139679

RESUMEN

The material extrusion 3D printing process known as fused deposition modeling (FDM) has recently gained relevance in the additive manufacturing industry for large-scale part production. However, improving the real-time monitoring of the process in terms of its mechanical properties remains important to extend the lifespan of numerous critical applications. To enhance the monitoring of mechanical properties during printing, it is necessary to understand the relationship between temperature profiles and ultimate tensile strength (UTS). This study uses a cyber-physical production system (CPPS) to analyze the impact of four key thermal parameters on the tensile properties of polylactic acid (PLA). Layer thickness, printing speed, and extrusion temperature are the most influential factors, while bed temperature has less impact. The Taguchi L-9 array and the full factorial design of experiments were implemented along with the deposited line's local fused temperature profile analysis. Furthermore, correlations between temperature profiles with the bonding strength during layer adhesion and part solidification can be stated. The results showed that layer thickness is the most important factor, followed by printing speed and extrusion temperature, with very close influence between each other. The lowest impact is attributed to bed temperature. In the experiments, the UTS values varied from 46.38 MPa to 56.19 MPa. This represents an increase in the UTS of around 17% from the same material and printing design conditions but different temperature profiles. Additionally, it was possible to observe that the influence of the parameter variations was not linear in terms of the UTS value or temperature profiles. For example, the increase in the UTS at the 0.6 mm layer thickness was around four times greater than the increase at 0.4 mm. Finally, even when it was found that an increase in the layer temperature led to an increase in the value of the UTS, for some of the parameters, it could be observed that it was not the main factor that caused the UTS to increase. From the monitoring conditions analyzed, it was concluded that the material requires an optimal thermal transition between deposition, adhesion, and layer solidification in order to result in part components with good mechanical properties. A tracking or monitoring system, such as the one designed, can serve as a potential tool for reducing the anisotropy in part production in 3D printing systems.

10.
Mol Biol Rep ; 51(1): 18, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38099977

RESUMEN

BACKGROUND: To tolerate salt and water-deficit stress, the plant adapts to the adverse environment by regulating its metabolism and expressing certain stress-induced metabolic pathways. This research analyzed the relative expression of four pea genes (P5CR, PAL1, SOD, and POX) in three pea varieties (Climax, Green grass, and Meteor) under different levels of salt and water-deficit stress. METHODS AND RESULTS: The experiments on salt stress and water-deficit stress were carried out within greenhouse settings under controlled environment. The saturation percentage was employed to create artificial salinity conditions: Control without NaCl treatment, Treatment 1: 50 mM NaCl treatment, Treatment 2: 75 mM NaCl treatment, and Treatment 3: 100 mM NaCl treatment. Field capacity (FC) was used for the development of artificial water-deficit treatments in the pots, i.e., Treatment 1 (Control; water application 100% of FC), Treatment 2 (water application 75% of FC), and Treatment 3 (water application 50% of FC). Pea genes involved in biosynthetic pathways of proline, flavonoids, and enzymatic antioxidant enzymes including P5CR, PAL1, SOD, and POX were selected based on literature. Quantitative real-time PCR using cDNA as a template was used to analyze the gene expression. Pea genes were analyzed for phylogenetic analysis in closely related crops having similarity percent identity 80% and above. In silico characterization of selected proteins including the family classification was done by the NCBI CDD and INTERPRO online servers. Results from RT-qPCR analysis showed increased expression of P5CR, PAL1, and POX genes, while SOD gene expression decreased under both stresses. Climax exhibited superior stress tolerance with elevated expression of P5CR and PAL1, while Meteor showed better tolerance through increased POX expression. Phylogenetic analysis revealed common ancestry with other species like chickpea, red clover, mung bean, and barrel clover, suggesting the cross relationship among these plant species. Conserved domain analysis of respective proteins revealed that these proteins contain PLNO 2688, PLN02457, Cu-Zn Superoxide dismutase, and secretory peroxidase conserved domains. Furthermore, protein family classification indicated that the oxidation-reduction process is the most common chemical process involved in these stresses given to pea plant which validates the relationship of these proteins. CONCLUSIONS: Salt and water-deficit stresses trigger distinct metabolic pathways, leading to the up-regulation of specific genes and the synthesis of corresponding proteins. These findings further emphasize the conservation of stress-tolerance-related genes and proteins across various plant species. This knowledge enhances our understanding of plant adaptation to stress and offers opportunities for developing strategies to improve stress resilience in crops, thereby addressing global food security challenges.


Asunto(s)
Cloruro de Sodio , /genética , Filogenia , Deshidratación , Agua , Productos Agrícolas , Superóxido Dismutasa
11.
Front Mol Biosci ; 10: 1292509, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37965379

RESUMEN

Infectious diseases remain among the most pressing concerns for human health. This issue has grown even more complex with the emergence of multidrug-resistant (MDR) bacteria. To address bacterial infections, nanoparticles have emerged as a promising avenue, offering the potential to target bacteria at multiple levels and effectively eliminate them. In this study, silver nanoparticles (AA-AgNPs) were synthesized using the leaf extract of a medicinal plant, Abroma augusta. The synthesis method is straightforward, safe, cost-effective, and environment friendly, utilizing the leaf extract of this Ayurvedic herb. The UV-vis absorbance peak at 424 nm indicated the formation of AA-AgNPs, with the involvement of numerous functional groups in the synthesis and stabilization of the particles. AA-AgNPs exhibited robust antibacterial and antibiofilm activities against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE). The MIC values of AA-AgNPs ranged from 8 to 32 µg/mL. Electron microscopic examination of the interaction of AA-AgNPs with the test bacterial pathogens showed a deleterious impact on bacterial morphology, resulting from membrane rupture and leakage of intracellular components. AA-AgNPs also demonstrated a dose-dependent effect in curtailing biofilm formation below inhibitory doses. Overall, this study highlights the potential of AA-AgNPs in the successful inhibition of both the growth and biofilms of MRSA and VRE bacteria. Following studies on toxicity and dose optimization, such AgNPs could be developed into effective medical remedies against infections.

12.
Environ Monit Assess ; 195(12): 1430, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37940800

RESUMEN

Industrial wastewater irrigation of agricultural crops can cause a lot of environmental and health problems in developing countries due to heavy metals deposition in agricultural soils as well as edible plant consumption by human beings. Therefore, this study was conducted to find out the heavy metals concentration in industrial wastewater and soil irrigated with that wastewater. In addition, the aim was to determine the impact of industrial wastewater irrigation on Parthenium hysterophorus and Zea mays genes involved in growth improvement and inhibition. For this purpose, plant samples from agriculture fields irrigated with wastewater from Hattar Industrial Estate (HIE) of Haripur, Pakistan, and control plants from non-contaminated soil irrigated with tape water were collected after 15 and 45 days of germination. Heavy metals concentration in the collected plant samples, wastewater, and soil was determined. The results revealed that the soil of the sample collection site was predominantly contaminated with Cr, Pb, Ni, Cu, Co, Zn, and Cd up to the concentrations of 38.98, 21.14, 46.01, 155.73, 12.50, 68.50, and 7.01 mg/kg, respectively. The concentrations of these heavy metals were found to surpass the permissible limit in normal agricultural soil. Expansins, cystatins (plant growth enhancers), and metacaspases (plant growth inhibitor) gene expression were studied through reverse transcription polymerase chain reaction. The results showed that the expression of these genes was higher in samples collected from wastewater-irrigated soils as compared to control. The expression of these genes was observed in 45 days old samples, 15 days old samples, and control. Taken together, this study suggests the use of Parthenium and maize for phytoremediation and that they should not be used for eating purposes if irrigated with industrial wastewater.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Humanos , Aguas Residuales , Zea mays/metabolismo , Contaminantes del Suelo/análisis , Monitoreo del Ambiente , Metales Pesados/análisis , Productos Agrícolas/metabolismo , Suelo , Riego Agrícola/métodos
13.
Materials (Basel) ; 16(9)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37176330

RESUMEN

The use of curved layers in fused filament fabrication could lead to various advantages in surface finishing and mechanical properties. Here, the influence of three different structural and manufacturing parameters (volume fraction, raster arrangement, and the use of curved or planar layers) on the mechanical properties of lattice structures under three-point bending is studied. Two different raster arrangements were considered, i.e., those with rasters at planes parallel to the principal axes of the samples and those diagonally arranged, all at four different volume fractions. All different samples were additively manufactured using planar and curved layers. Samples were further dimensionally inspected to refine the computational models before their analysis via finite element simulations. The linear elastic region of the load-displacement curves was further analyzed numerically via finite element models. Predictions with finite element models resulted in good agreement with errors below 10%. Samples with diagonal rasters were 70% softer than those parallel to the principal axes.

14.
Front Nutr ; 10: 1118156, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36998914

RESUMEN

Introduction: Fortification of cereal products with natural plant extract is an interesting approach to fulfill the dietary requirement of the people. Materials and methods: Peels of pomegranate (rich source of natural compounds) were cut into small pieces and dried in three different methods such as solar drying (SOD), oven drying (OD), and sun drying (SUD). The fine powder was prepared and proximate compositions (protein, ash, moisture, fats, fiber, and carbohydrates), minerals (zinc, iron, calcium, and potassium), total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activity (DPPH) of the pomegranate peel powder (PP) were evaluated. Fine wheat flour (FWF) was fortified with different concentrations (3, 6, 8, 10, and 12 g) of PP powder, cookies were prepared and all the above analysis along with physical parameters (weight, width, thickness, spread ration) and sensory analysis were conducted. Cookies without PP powder were served as control. Results and discussion: Results showed that a SOD was the best for drying PP powder in terms of compositional analysis. Addition of PP powder significantly (P < 0.05) enhanced the nutritional value, minerals profile and physical attributes of the fortified cookies. Sensory analysis of fortified cookies indicated that the cookies were acceptable to the sensory panel. Therefore, in conclusion, PP powder dried by SOD method could be used commercially in baking industries to provide nutritional enriched cookies to fulfill the dietary requirements of the people.

15.
Biosensors (Basel) ; 13(3)2023 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-36979587

RESUMEN

Early-stage uric acid (UA) abnormality detection is crucial for a healthy human. With the evolution of nanoscience, metal oxide nanostructure-based sensors have become a potential candidate for health monitoring due to their low-cost, easy-to-handle, and portability. Herein, we demonstrate the synthesis of puffy balls-like cobalt oxide nanostructure using a hydrothermal method and utilize them to modify the working electrode for non-enzymatic electrochemical sensor fabrication. The non-enzymatic electrochemical sensor was utilized for UA determination using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The puffy balls-shaped cobalt oxide nanostructure-modified glassy carbon (GC) electrode exhibited excellent electro-catalytic activity during UA detection. Interestingly, when we compared the sensitivity of non-enzymatic electrochemical UA sensors, the DPV technique resulted in high sensitivity (2158 µA/mM.cm2) compared to the CV technique (sensitivity = 307 µA/mM.cm2). The developed non-enzymatic electrochemical UA sensor showed good selectivity, stability, reproducibility, and applicability in the human serum. Moreover, this study indicates that the puffy balls-shaped cobalt oxide nanostructure can be utilized as electrode material for designing (bio)sensors to detect a specific analyte.


Asunto(s)
Nanoestructuras , Ácido Úrico , Humanos , Reproducibilidad de los Resultados , Óxidos/química , Electrodos , Técnicas Electroquímicas/métodos
16.
J Infect Public Health ; 16(2): 257-263, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36608452

RESUMEN

In recent years, we are facing the challenge of drug resistance emergence in fungi. The availability of limited antifungals and development of multi-drug resistance in fungal pathogens has become a serious concern in the past years in the health sector. Although several cellular, molecular, and genetic mechanisms have been proposed to explain the drug resistance mechanism in fungi, but a complete understanding of the molecular and genetic mechanisms is still lacking. Besides the genetic mechanism, epigenetic mechanisms are pivotal in the fungal lifecycle and disease biology. However, very little is understood about the role of epigenetic mechanisms in the emergence of multi-drug resistance in fungi, especially in Candida auris (C. auris). The current narrative review summaries the clinical characteristics, genomic organization, and molecular/genetic/epigenetic mechanisms underlying the emergence of drug resistance in C. auris. A very few studies have attempted to evaluate the role of epigenetic mechanisms in C. auris. Furthermore, advanced genetic tools such as the CRISP-Cas9 system can be utilized to elucidate the epigenetic mechanisms and their role in the emergence of multi-drug resistance in C. auris.


Asunto(s)
Candida auris , Candida , Humanos , Candida/genética , Genética Conductual , Antifúngicos/farmacología , Farmacorresistencia Fúngica/genética , Pruebas de Sensibilidad Microbiana
17.
Front Plant Sci ; 14: 1268750, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38235192

RESUMEN

Salinity is known to have a greater impact on shoot growth than root growth. Na+ buildup in plant tissue under salt stress has been proposed as one of the main issues that causes growth inhibition in crops via ionic imbalances, osmotic stress and pH disturbances. However, the evidence for apoplastic Na+ buildup and the role of silicon in Na+ accumulation at the subcellular level is still enigmatic. The current study focuses on the accumulation of Na+ in the apoplast and symplast of younger and older leaves of two maize varieties (Iqbal as salt-tolerant and Jalal as salt-sensitive) using hydroponic culture along with silicon supplementation under short-term salinity stress. Subcellular ion analysis indicated that silicon nutrition decreased Na+ concentration in both apoplastic washing fluid and symplastic fluid of maize under salt stress. The addition of silicon under NaCl treatment resulted in considerable improvement in fresh biomass, relative water content, chlorophyll content, and concentration of important subcellular ions (i.e., Ca2+, Mg2+, and K+). Knowledge of subcellular ion analysis is essential for solving the mechanisms underlying vital cellular functions e.g. in the current study, the soluble Na+ concentration in the apoplast of older leaves was found to be significantly greater (36.1 mM) in the salt-sensitive variety under NaCl treatment, which was 42.4% higher when compared to the Na+ concentration in the salt-tolerant variety under the same treatment which can influence permeability of cell membrane, signal transduction pathways and provides insights into how ion compartmentalization can contributes to salt tolerance. Calcium silicate enrichment can contribute to increased growth and improved ionic homeostasis by minimizing leaf electrolyte leakage, improving mechanical functions of cell wall and reducing water loss, and improved photosynthetic function. In current investigation, increased water content and intracellular ionic homeostasis along with reduced concentration of Na+ in the maize leaf apoplast suggest that calcium silicate can be used to ameliorate the adverse effects of salt stress and obtain yield using marginal saline lands.

18.
Biosensors (Basel) ; 12(12)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36551107

RESUMEN

Transition metal oxide (TMO)-based nanomaterials are effectively utilized to fabricate clinically useful ultra-sensitive sensors. Different nanostructured nanomaterials of TMO have attracted a lot of interest from researchers for diverse applications. Herein, we utilized a hydrothermal method to develop porous nanosheets of cobalt oxide. This synthesis method is simple and low temperature-based. The morphology of the porous nanosheets like cobalt oxide was investigated in detail using FESEM and TEM. The morphological investigation confirmed the successful formation of the porous nanosheet-like nanostructure. The crystal characteristic of porous cobalt oxide nanosheets was evaluated by XRD analysis, which confirmed the crystallinity of as-synthesized cobalt oxide nanosheets. The uric acid sensor fabrication involves the fixing of porous cobalt oxide nanosheets onto the GCE (glassy carbon electrode). The non-enzymatic electrochemical sensing was measured using CV and DPV analysis. The application of DPV technique during electrochemical testing for uric acid resulted in ultra-high sensitivity (3566.5 µAmM-1cm-2), which is ~7.58 times better than CV-based sensitivity (470.4 µAmM-1cm-2). Additionally, uric acid sensors were tested for their selectivity and storage ability. The applicability of the uric acid sensors was tested in the serum sample through standard addition and recovery of known uric acid concentration. This ultrasensitive nature of porous cobalt oxide nanosheets could be utilized to realize the sensing of other biomolecules.


Asunto(s)
Nanoestructuras , Ácido Úrico , Porosidad , Óxidos/química , Nanoestructuras/química , Electrodos , Técnicas Electroquímicas/métodos
19.
Materials (Basel) ; 15(22)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36431577

RESUMEN

In this paper, we present the work of designing and fabricating a new generation of microelectromechanical systems (MEMS) based microfluidic preconcentrators (MFP) for volatile organic compounds (VOCs) quantification. The main objective of this work is to quantify the n-pentane impurities using MFP for sample preparation. The MFP was analyzed using Hewlett-Packard 5890 gas chromatography, having a flame ionization detector under isothermal conditions. The proposed MFP system includes two-microfluidic preconcentrators for continuous action and a system of four 3/2 solenoid valves with a control unit. Microfluidic preconcentrators were placed on metal plates and have circular channels filled with Al2O3 (50 µm), n-octane ResSil-C (80/100 mesh) sorbents of one nature and are hyphenated with the Peltier elements to regulate the temperature of sorption and desorption. The n-pentane quantitative determination was carried out using a calibration plot of gas mixtures on a successive dilution with the nitrogen. This study shows that the microfluidic preconcentrator system with Al2O3 and n-Octane ResSil-C sorbent concentrates the n-pentane traces up to 41 to 47 times from the gas mixture with the standard deviation of ≤5%. It has been observed that the n-octane ResSil-C based MFC shows very fast response (<5 min) and stability up to 300 cycles.

20.
Int J Biol Macromol ; 223(Pt A): 418-432, 2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36356866

RESUMEN

Because of the apparent stasis in antibiotic discoveries and the growth of multidrug resistance, Helicobacter pylori-associated gastric infections are difficult to eradicate. In the search for alternative therapy, the reductive amination of chitosan with mannose, followed by ionic gelation, produced mannose functionalized chitosan nanoparticles. Then, molecular docking and molecular dynamics (MD) simulations were conducted with H. pylori lectin (HPLectin) as a target protein involved in bacterium adherence to host cells, biofilm formation, and cytotoxicity. Changes in zeta potential and FTIR spectroscopy revealed that chitosan was functionalized with mannose. Time-kill, polystyrene adherence, and antibiofilm studies were utilized to assess nanoparticles as an alternative antibacterial treatment against a resistant gastric pathogen. Man-CS-Nps were discovered to have effective anti-adherence and biofilm disruption characteristics in suppressing the development of resistant H. pylori. In addition, bioimaging studies with CLSM, TEM, and SEM illustrated that Man-CS-Nps interacted with bacterial cells and induced membrane disruption by creating holes in the outer membranes of the bacterial cells, resulting in the leakage of amino acids. Importantly, molecular docking and 20 ns MD simulations revealed that Man-CS-Nps inhibited the target protein through slow-binding inhibition and hydrogen bond interactions with active site residues. As a consequence of the findings of this study, the Man-CS-Nps is an excellent candidate for developing alternative therapies for the increasing incidences of resistant gastric infections.


Asunto(s)
Quitosano , Infecciones por Helicobacter , Helicobacter pylori , Nanopartículas , Humanos , Quitosano/química , Manosa/farmacología , Simulación del Acoplamiento Molecular , Nanopartículas/química , Antibacterianos/farmacología , Infecciones por Helicobacter/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...