Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
1.
J Agric Food Chem ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980762

RESUMEN

Climate change, particularly drought and heat stress, may slash agricultural productivity by 25.7% by 2080, with maize being the hardest hit. Therefore, unraveling the molecular nature of plant responses to these stressors is vital for the development of climate-smart maize. This manuscript's primary objective was to examine how maize plants respond to these stresses, both individually and in combination. Additionally, the paper delved into harnessing the potential of maize wild relatives as a valuable genetic resource and leveraging AI-based technologies to boost maize resilience. The role of multiomics approaches particularly genomics and transcriptomics in dissecting the genetic basis of stress tolerance was also highlighted. The way forward was proposed to utilize a bunch of information obtained through omics technologies by an interdisciplinary state-of-the-art forward-looking big-data, cyberagriculture system, and AI-based approach to orchestrate the development of climate resilient maize genotypes.

2.
J Hazard Mater ; 476: 135063, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38954853

RESUMEN

Ball-milled plastic char supported nano zero-valent iron (nZVI@BMPC) and their application combined with anaerobic sludge for microbial dechlorination of 2,4,6-trichlorophenol (2,4,6-TCP) were investigated. The XRD and FTIR analysis proved composition of zero valent states of iron, and the BET and SEM analysis showed that nZVI was uniformly distributed on the surface of BMPC. Successive addition of 1000 mg/L sodium lactate and nZVI@BMPC enhanced the acclamation of anaerobic sludge and resulted in the degradation of 4-CP within 80 days. The acclimated consortium with nZVI@BMPC completely degraded 2,4,6-TCP into CH4 and CO2, and the key dechlorination route was through 4-CP dechlorinaion and mineralization. The degradation rate of 2,4,6-TCP with nZVI@BMPC was 0.22/d, greater than that without nZVI@BMPC. The dechlorination efficiency was enhanced in the Fe2+/Fe3+ system controlled by nZVI@BMPC and iron-reducing bacteria. Metagenomic analysis result showed that the dominant de-chlorinators were Chloroflexi sp., Desulfovibrio, and Pseudomonas, which could directly degrade 2,4,6-TCP to 4-CP, especially, Chloroflexi bacterium could concurrently be used to mineralize 4-CP. The relative abundance of the functional genes cprA, acoA, acoB, and tfdB increased significantly in the presence of the nZVI@BMPC. This study provides a new strategy can be a good alternative for possible application in groundwater remediation.

3.
Artículo en Inglés | MEDLINE | ID: mdl-39023728

RESUMEN

Perovskites are an emerging material with a variety of applications, ranging from their solar light conversion capability to their sensing efficiency. In current study, perovskite nanocrystals (PNCs) were designed using theoretical density functional theory (DFT) analysis. Moreover, the theoretically designed PNCs were fabricated and confirmed by various characterization techniques. The calculated optical bandgap from UV-Vis and fluorescence spectra were 2.15 and 2.05 eV, respectively. The average crystallite size of PNCs calculated from Scherrer equation was 15.18 nm, and point of zero charge (PZC) was obtained at pH 8. The maximum eosin B (EB) removal efficiency by PNCs was 99.56% at optimized conditions following first-order kinetics with 0.98 R2 value. The goodness of the response surface methodology (RSM) model was confirmed from analysis of variance (ANOVA), with the experimental F value (named after Ronald Fisher) of 194.66 being greater than the critical F value F0.05, 14, 14 = 2.48 and a lack of fit value of 0.0587. The Stern-Volmer equation with a larger Ksv value of 1.303710 × 10 6 for Pb2+ suggests its greater sensitivity for Pb2+ among the different metals tested.

4.
Diagnostics (Basel) ; 14(11)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38893707

RESUMEN

This study, utilizing high-throughput technologies and Machine Learning (ML), has identified gene biomarkers and molecular signatures in Inflammatory Bowel Disease (IBD). We could identify significant upregulated or downregulated genes in IBD patients by comparing gene expression levels in colonic specimens from 172 IBD patients and 22 healthy individuals using the GSE75214 microarray dataset. Our ML techniques and feature selection methods revealed six Differentially Expressed Gene (DEG) biomarkers (VWF, IL1RL1, DENND2B, MMP14, NAAA, and PANK1) with strong diagnostic potential for IBD. The Random Forest (RF) model demonstrated exceptional performance, with accuracy, F1-score, and AUC values exceeding 0.98. Our findings were rigorously validated with independent datasets (GSE36807 and GSE10616), further bolstering their credibility and showing favorable performance metrics (accuracy: 0.841, F1-score: 0.734, AUC: 0.887). Our functional annotation and pathway enrichment analysis provided insights into crucial pathways associated with these dysregulated genes. DENND2B and PANK1 were identified as novel IBD biomarkers, advancing our understanding of the disease. The validation in independent cohorts enhances the reliability of these findings and underscores their potential for early detection and personalized treatment of IBD. Further exploration of these genes is necessary to fully comprehend their roles in IBD pathogenesis and develop improved diagnostic tools and therapies. This study significantly contributes to IBD research with valuable insights, potentially greatly enhancing patient care.

5.
Biology (Basel) ; 13(6)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38927240

RESUMEN

Flooding and drought are the two most devastating natural hazards limiting maize production. Exogenous glycinebetaine (GB), an osmotic adjustment agent, has been extensively used but there is limited research on its role in mitigating the negative effects of different abiotic stresses. This study aims to identify the different roles of GB in regulating the diverse defense regulation of maize against drought and flooding. Hybrids of Yindieyu 9 and Heyu 397 grown in pots in a ventilated greenhouse were subjected to flooding (2-3 cm standing layer) and drought (40-45% field capacity) at the three-leaf stage for 8 d. The effects of different concentrations of foliar GB (0, 0.5, 1.0, 5.0, and 10.0 mM) on the physiochemical attributes and growth of maize were tested. Greater drought than flooding tolerance in both varieties to combat oxidative stress was associated with higher antioxidant activities and proline content. While flooding decreased superoxide dismutase and guaiacol peroxidase (POD) activities and proline content compared to normal water, they all declined with stress duration, leading to a larger reactive oxygen species compared to drought. It was POD under drought stress and ascorbate peroxidase under flooding stress that played crucial roles in tolerating water stress. Foliar GB further enhanced antioxidant ability and contributed more effects to POD to eliminate more hydrogen peroxide than the superoxide anion, promoting growth, especially for leaves under water stress. Furthermore, exogenous GB made a greater increment in Heyu 397 than Yindieyu 9, as well as flooding compared to drought. Overall, a GB concentration of 5.0 mM, with a non-toxic effect on well-watered maize, was determined to be optimal for the effective mitigation of water-stress damage to the physiochemical characteristics and growth of maize.

6.
Physiol Plant ; 176(3): e14369, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38828612

RESUMEN

High temperature (HT) affects the production of chlorophyll (Chl) pigment and inhibits cellular processes that impair photosynthesis, and growth and development in plants. However, the molecular mechanisms underlying heat stress in rice are not fully understood yet. In this study, we identified two mutants varying in leaf color from the ethylmethanesulfonate mutant library of indica rice cv. Zhongjiazao-17, which showed pale-green leaf color and variegated leaf phenotype under HT conditions. Mut-map revealed that both mutants were allelic, and their phenotype was controlled by a single recessive gene PALE GREEN LEAF 10 (PGL10) that encodes NADPH:protochlorophyllide oxidoreductase B, which is required for the reduction of protochlorophyllide into chlorophyllide in light-dependent tetrapyrrole biosynthetic pathway-based Chl synthesis. Overexpression-based complementation and CRISPR/Cas9-based knockout analyses confirmed the results of Mut-map. Moreover, qRT-PCR-based expression analysis of PGL10 showed that it expresses in almost all plant parts with the lowest expression in root, followed by seed, third leaf, and then other green tissues in both mutants, pgl10a and pgl10b. Its protein localizes in chloroplasts, and the first 17 amino acids from N-terminus are responsible for signals in chloroplasts. Moreover, transcriptome analysis performed under HT conditions revealed that the genes involved in the Chl biosynthesis and degradation, photosynthesis, and reactive oxygen species detoxification were differentially expressed in mutants compared to WT. Thus, these results indicate that PGL10 is required for maintaining chloroplast function and plays an important role in rice adaptation to HT stress conditions by controlling photosynthetic activity.


Asunto(s)
Oryza , Fotosíntesis , Proteínas de Plantas , Oryza/genética , Oryza/fisiología , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Cloroplastos/metabolismo , Calor , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Clorofila/metabolismo , Mutación , Respuesta al Choque Térmico/genética , Mutación con Pérdida de Función , Fenotipo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH
7.
New Phytol ; 243(4): 1440-1454, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38923565

RESUMEN

Rice tillering is one of the most important agronomical traits largely determining grain yield. Photosynthesis and nitrogen availability are two important factors affecting rice tiller bud elongation; however, underlying mechanism and their cross-talk is poorly understood. Here, we used map-based cloning, transcriptome profiling, phenotypic analysis, and molecular genetics to understand the roles of the Decreased Tiller Number 1 (DTN1) gene that encodes the fructose-1,6-bisphosphate aldolase and involves in photosynthesis required for light-induced axillary bud elongation in rice. Deficiency of DTN1 results in the reduced photosynthetic rate and decreased contents of sucrose and other sugars in both leaves and axillary buds, and the reduced tiller number in dtn1 mutant could be partially rescued by exogenous sucrose treatment. Furthermore, we found that the expression of nitrogen-mediated tiller growth response 5 (NGR5) was remarkably decreased in shoot base of dtn1-2, which can be activated by sucrose treatment. Overexpression of NGR5 in the dtn1-2 could partially rescue the reduced tiller number, and the tiller number of dtn1-2 was insensitive to nitrogen supply. This work demonstrated that the sugar level regulated by photosynthesis and DTN1 could positively regulate NGR5 expression, which coordinates the cross-talk between carbon and nitrate to control tiller bud outgrowth in rice.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Nitrógeno , Oryza , Fotosíntesis , Proteínas de Plantas , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/efectos de los fármacos , Oryza/metabolismo , Fotosíntesis/efectos de los fármacos , Nitrógeno/metabolismo , Nitrógeno/farmacología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Sacarosa/metabolismo , Sacarosa/farmacología , Azúcares/metabolismo , Mutación/genética , Genes de Plantas , Fenotipo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/metabolismo
8.
Plant Genome ; 17(2): e20461, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38797919

RESUMEN

Nitrogen (N) as an inorganic macronutrient is inevitable for plant growth, development, and biomass production. Many external factors and stresses, such as acidity, alkalinity, salinity, temperature, oxygen, and rainfall, affect N uptake and metabolism in plants. The uptake of ammonium (NH4 +) and nitrate (NO3 -) in plants mainly depends on soil properties. Under the sufficient availability of NO3 - (>1 mM), low-affinity transport system is activated by gene network NRT1, and under low NO3 - availability (<1 mM), high-affinity transport system starts functioning encoded by NRT2 family of genes. Further, under limited N supply due to edaphic and climatic factors, higher expression of the AtNRT2.4 and AtNRT2.5T genes of the NRT2 family occur and are considered as N remobilizing genes. The NH4 + ion is the final form of N assimilated by cells mediated through the key enzymes glutamine synthetase and glutamate synthase. The WRKY1 is a major transcription factor of the N regulation network in plants. However, the transcriptome and metabolite profiles show variations in N assimilation metabolites, including glycine, glutamine, and aspartate, under abiotic stresses. The overexpression of NO3 - transporters (OsNRT2.3a and OsNRT1.1b) can significantly improve the biomass and yield of various crops. Altering the expression levels of genes could be a valuable tool to improve N metabolism under the challenging conditions of soil and environment, such as unfavorable temperature, drought, salinity, heavy metals, and nutrient stress.


Asunto(s)
Nitrógeno , Estrés Fisiológico , Nitrógeno/metabolismo , Plantas/metabolismo , Plantas/genética , Regulación de la Expresión Génica de las Plantas
9.
Sci Rep ; 14(1): 10239, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702340

RESUMEN

The classification of locally rotationally symmetric Bianchi type V spacetime based on its killing vector fields is presented in this paper using an algebraic method. In this approach, a Maple algorithm is employed to transform the Killing's equations into a reduced evolutive form. Subsequently, the integration of the Killing's equations is carried out subject to the constraints provided by the algorithm. The algorithm demonstrates that there exist fifteen distinct metrics that could potentially possess Killing vector fields. Upon solving the Killing equations for all fifteen metrics, it is observed that seven out of the fifteen metrics exclusively exhibit the minimum number of Killing vector fields. The remaining eight metrics admit a varying number of Killing vector fields, specifically 6, 7, or 10. The Kretschmann scalar has been computed for each of the obtained metrics, revealing that all of them possess a finite Kretschmann scalar and thus exhibit regular behavior.

10.
BMC Plant Biol ; 24(1): 427, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38769501

RESUMEN

BACKGROUND: Our meta-analysis examines the effects of melatonin on wheat under varying abiotic stress conditions, focusing on photosynthetic parameters, chlorophyll fluorescence, leaf water status, and photosynthetic pigments. We initially collected 177 publications addressing the impact of melatonin on wheat. After meticulous screening, 31 published studies were selected, encompassing 170 observations on photosynthetic parameters, 73 on chlorophyll fluorescence, 65 on leaf water status, 240 on photosynthetic pigments. RESULTS: The analysis revealed significant heterogeneity across studies (I² > 99.90%) for the aforementioned parameters and evidence of publication bias, emphasizing the complex interaction between melatonin application and plant physiological responses. Melatonin enhanced the overall response ratio (lnRR) for photosynthetic rates, stomatal conductance, transpiration rates, and fluorescence yields by 20.49, 22.39, 30.96, and 1.09%, respectively, compared to the control (no melatonin). The most notable effects were under controlled environmental conditions. Moreover, melatonin significantly improved leaf water content and reduced water potential, particularly under hydroponic conditions and varied abiotic stresses, highlighting its role in mitigating water stress. The analysis also revealed increases in chlorophyll pigments with soil drenching and foliar spray, and these were considered the effective application methods. Furthermore, melatonin influenced chlorophyll SPAD and intercellular CO2 concentrations, suggesting its capacity to optimize photosynthetic efficiency. CONCLUSIONS: This synthesis of meta-analysis confirms that melatonin significantly enhances wheat's resilience to abiotic stress by improving photosynthetic parameters, chlorophyll fluorescence, leaf water status, and photosynthetic pigments. Despite observed heterogeneity and publication bias, the consistent beneficial effects of melatonin, particularly under controlled conditions with specific application methods e.g. soil drenching and foliar spray, demonstrate its utility as a plant growth regulator for stress management. These findings encourage focused research and application strategies to maximize the benefits of melatonin in wheat farming, and thus contributing to sustainable agricultural practices.


Asunto(s)
Melatonina , Fotosíntesis , Estrés Fisiológico , Triticum , Melatonina/farmacología , Triticum/fisiología , Triticum/efectos de los fármacos , Triticum/crecimiento & desarrollo , Triticum/metabolismo , Fotosíntesis/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Clorofila/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/fisiología
11.
Int J Mol Sci ; 25(8)2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38674136

RESUMEN

Cereal crops are crucial for global food security; however, they are susceptible to various environmental stresses that significantly hamper their productivity. In response, melatonin has emerged as a promising regulator, offering potential benefits for stress tolerance and crop growth. This review explores the effects of melatonin on maize, sorghum, millet, rice, barley, and wheat, aiming to enhance their resilience to stress. The application of melatonin has shown promising outcomes, improving water use efficiency and reducing transpiration rates in millet under drought stress conditions. Furthermore, it enhances the salinity and heavy metal tolerance of millet by regulating the activity of stress-responsive genes. Similarly, melatonin application in sorghum enhances its resistance to high temperatures, low humidity, and nutrient deficiency, potentially involving the modulation of antioxidant defense and aspects related to photosynthetic genes. Melatonin also exerts protective effects against drought, salinity, heavy metal, extreme temperatures, and waterlogging stresses in maize, wheat, rice, and barley crops by decreasing reactive oxygen species (ROS) production through regulating the antioxidant defense system. The molecular reactions of melatonin upregulated photosynthesis, antioxidant defense mechanisms, the metabolic pathway, and genes and downregulated stress susceptibility genes. In conclusion, melatonin serves as a versatile tool in cereal crops, bolstering stress resistance and promoting sustainable development. Further investigations are warranted to elucidate the underlying molecular mechanisms and refine application techniques to fully harness the potential role of melatonin in cereal crop production systems.


Asunto(s)
Productos Agrícolas , Grano Comestible , Melatonina , Estrés Fisiológico , Melatonina/metabolismo , Melatonina/farmacología , Grano Comestible/metabolismo , Grano Comestible/genética , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Productos Agrícolas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Sequías , Fotosíntesis/efectos de los fármacos , Antioxidantes/metabolismo
12.
Obstet Med ; 17(1): 63-65, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38660326

RESUMEN

Carotid webs are intraluminal shelf-like projections caused by thickening of the arterial tunica intima. Due to their projections forming a nidus for thrombus formation and subsequent embolus, they are considered to be a rare cause of ischaemic strokes. We report a case of a woman with a background of recurrent ischaemic strokes due to bilateral carotid webs who presented with a twin pregnancy. We use this case to discuss how her pregnancy-related stroke risk was subsequently medically managed.

14.
Heliyon ; 10(6): e28225, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38545135

RESUMEN

Geckos and their products have been used in Asian traditional medicine. Medicinal properties of desert-dwelling Gecko species, Crossobamon orientalis remain unexplored. In this study, natural bioactive macromolecules present in oil extracted from C. orientalis (COO) and their biological activities were evaluated. Chemical constitution of COO was explored by using gas chromatography mass spectrometry. Antioxidant, antiviral, and antibacterial activities of COO extracts were assessed using various assays, including DPPH free-radical-protocol, HET-CAM method, in ovo-antiviral technique, and disc-diffusion method. GC-MS study reported 40 different compounds in COO. n-hexane and methanol extracts of COO demonstrated highest DPPH radical inhibition, with values of 70 and 63.3%, respectively. Extracts of COO in solvents, namely 1-butanol, methanol, diethyl ether, and n-hexane significantly inhibited the proliferation of four pathogenic viruses. Maximum zone of inhibition was observed for Escherichia coli (13.65 ± 0.57 mm). These findings suggest that COO possesses potent antioxidant and antimicrobial properties against viral and bacterial strains, thanks to its biologically active components having no side effects. Further studies are essential to isolate and identify individual bioactive compounds present in COO and to investigate their potential as therapeutic agents.

15.
Toxicol Res (Camb) ; 13(2): tfae045, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38545435

RESUMEN

In this study COVID-19 effects on different aspects of life that how this virus created a mess in every discipline of life starting from a small tuck shop of a street to a huge business with a chain between different countries; and some preventive measures are also suggested. Not only mental healthiness as well as physical health of people was also disturbed to a large extent. People being quarantined did not do any practice and had nothing to do, their boredom made them mentally and physically inactive. For minimization the effect of this pandemic on mental healthiness, interventions were practiced and psychological support systems were developed to help mentally effected people; on the other hand, to improve physical health the hospital workers worked day and night in return they got affected too either mentally or physically. Many of the youngsters started alcohol consumption during quarantine. Because of the closure of educational institutes, the students were sent back to their homes where there was no proper guidance for them and they lost their interests in studies; and in a sense educational impact of COVID-19 was also unbearable. Agricultural system was affected badly and the whole world passed through a huge economic loss. The flights and traffic were blocked throughout the world, and it is the only positive impact that COVID-19 led to the environment by improving water and air quality as there was a remarkable reduction in the emission of greenhouse gases.

16.
Toxicol Rep ; 12: 292-298, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38495471

RESUMEN

Teratogenic and embryotoxic effect of diclofenac sodium (DS) on different developmental stages of the chick-embryos was investigated by examining different parameters such as its mortality rate, hatching, morphological measurements, weighing its internal organs and calculation of different indices. Experiment was divided into four trials with different dose (0.1 mL, 0.2 mL, 0.3 mL in groups A, B, and C, respectively and group D received 0.3 mL saline solution (0.9% NaCl) and group E remained un-injected) administration and observation. Results of first and second trial showed statistically (p<0.01) significant difference in bodyweight, body-length, forelimb and hindlimb length between experimental and control groups. In third trial, diclofenac sodium administration showed a statistically (p<0.01) significant difference in the bodyweight, body-length, forelimb, hindlimb length, liver weight, egg weight (EE ratio) and kidney somatic index (KSI). The beak-size, heart weight, kidney weight, cardiac somatic index (CSI) and hepato somatic index (HSI) were not significant (p>0.05) when compared with the control groups. In trial 4, forelimb, hindlimb length, heart weight, CSI and HSI were statistically (p<0.01) significant. Body-length and liver weight were significant (p<0.05). While bodyweight, beak size, kidney weight and KSI were non-significant (p>0.05). The mortality rate was increased with increase dose of DS and also affected the hatching. DS effect on chick embryos can be applied to humans because the early development of mammals and birds are closely related. So, it was concluded that DS should be used with caution during pregnancy especially during first trimester of pregnancy.

17.
Sci Rep ; 14(1): 5098, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429315

RESUMEN

Low-carbon steel (AISI 1010) is the predominant material used in industrial food processing equipment. Such equipment is vulnerable to the corrosive environment produced by various production stages. Different processes, such as sulphonation and carbonation, are used in the processing of sugar in the sugar industry, creating a corrosive atmosphere. The corrosion behavior of low carbon steel (AISI 1010) is strongly influenced by grain size variations, which in turn affect the microstructural mechanical properties of the material. The mechanical behavior and performance of metallic materials, including their corrosion resistance, is determined by grain size which is an important parameter for this phenomena. The impact of low-carbon steel (AISI 1010) microstructure on corrosion behavior is discussed in this work. Heat treatment produces two different types of microstructure from the same material, which are then analyzed. Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) have both been used to study characteristics including morphology and content. By supplying an appropriate corrosive medium, the corrosion performance of several microstructures of low-carbon steel (AISI 1010) was assessed, and corrosion rates were calculated using weight-loss and electrochemical techniques. Results show that the creation of a protective coating with a higher charge transfer resistance is caused by the adsorption process. The variety in phases and grain sizes may contribute to the corrosion stability of different microstructures, and as a result, the corrosion rate lowers as average grain sizes are reduced. Employing the galvanic effect, pearlite increases the rate of ferrite corrosion. The study's findings support the notion that quenching low-carbon steel (AISI 1010) results in a finer grain structure and greater corrosion resistance.

18.
Environ Res ; 251(Pt 1): 118569, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38431069

RESUMEN

Topography of a place has a significant impact on soil characteristics that ultimately influence soil iodine levels. Lower Himalayan region (LHR) in Pakistan has a wide range of climatic and geological variations. Hence, an investigation was conducted to analyze the iodine concentration and other physicochemical properties of soils in two LHR districts, Haripur and Mansehra. Spatial analysis indicated a decrease in iodine levels in the mountainous regions in comparison to the flat portions of LHR. Soil samples obtained from different locations across Haripur had a stronger affinity for iodine due to variations in solubility and adsorption of iodine to soil clay components, which can be attributed to lower pH, higher organic matter, and a higher cation exchange capacity (CEC). In contrast to the plains of Haripur, elevated locations in the Mansehra district had decreased levels of iodine, along with a higher soil pH and reduced soil organic matter. The soil erosion and depletion of soil micronutrients in the hilly region of Mansehra may be attributed to the unfavorable soil conditions and excessive precipitation. Presence of clay, iron (Fe), and aluminum (Al) in the soil led to a rise in iodine levels. Iodine concentrations exhibited an inverse relationship with soil acidity. Study revealed a direct correlation between soil iodine levels and their cation exchange capacity (CEC) and clay content. This study aims to gather fundamental data for the chosen regions of LHR to address illnesses caused by iodine deficiency.


Asunto(s)
Yodo , Suelo , Suelo/química , Yodo/análisis , Yodo/química , Pakistán , Concentración de Iones de Hidrógeno
19.
Plant Biotechnol J ; 22(6): 1582-1595, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38245899

RESUMEN

Head rice yield (HRY) measures rice milling quality and determines final grain yield and commercial value. Here, we report that two major quantitative trait loci for milling quality in rice, qMq-1 and qMq-2, represent allelic variants of Waxylv/Waxyb (hereafter Wx) encoding Granule-Bound Starch Synthase I (GBSSI) and Alkali Spreading Value ALKc/ALKb encoding Soluble Starch Synthase IIa (SSIIa), respectively. Complementation and overexpression transgenic lines in indica and japonica backgrounds confirmed that Wx and ALK coordinately regulate HRY by affecting amylose content, the number of amylopectin branches, amyloplast size, and thus grain filling and hardness. The transcription factor OsDOF18 acts upstream of Wx and ALK by activating their transcription. Furthermore, rice accessions with Wxb and ALKb alleles showed improved HRY over those with Wxlv and ALKc. Our study not only reveals the novel molecular mechanism underlying the formation of HRY but also provides a strategy for breeding rice cultivars with improved HRY.


Asunto(s)
Alelos , Oryza , Proteínas de Plantas , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sitios de Carácter Cuantitativo/genética , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Almidón Sintasa/genética , Almidón Sintasa/metabolismo
20.
Rice (N Y) ; 17(1): 8, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38228921

RESUMEN

As the source of isoprenoid precursors, the plastidial methylerythritol phosphate (MEP) pathway plays an essential role in plant development. Here, we report a novel rice (Oryza sativa L.) mutant ygl3 (yellow-green leaf3) that exhibits yellow-green leaves and lower photosynthetic efficiency compared to the wild type due to abnormal chloroplast ultrastructure and reduced chlorophyll content. Map-based cloning showed that YGL3, one of the major genes involved in the MEP pathway, encodes 4-hydroxy-3-methylbut-2-enyl diphosphate reductase, which is localized in the thylakoid membrane. A single base substitution in ygl3 plants resulted in lower 4-hydroxy-3-methylbut-2-enyl diphosphate reductase activity and lower contents of isopentenyl diphosphate (IPP) compared to the wild type. The transcript levels of genes involved in the syntheses of chlorophyll and thylakoid membrane proteins were significantly reduced in the ygl3 mutant compared to the wild type. The phytochrome interacting factor-like gene OsPIL11 regulated chlorophyll synthesis during the de-etiolation process by directly binding to the promoter of YGL3 to activate its expression. The findings provides a theoretical basis for understanding the molecular mechanisms by which the MEP pathway regulate chloroplast development in rice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...