Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Vet Anim Sci ; 23: 100331, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38283334

RESUMEN

This study attempts to isolate a candidate growth promoter from the ovine paunch waste and scrutinize its effects on the production performance of broiler chickens as compared to mannan-oligosaccharide (MOS), a prebiotic, and lincomycin, an antibiotic growth promoter (AB). The paunch waste collected from slaughtered sheep was processed to remove particulate matter. The clarified liquid was then added to an excess of ethanol (1:9 ratio), and the resultant precipitate {(novel growth-promoting paunch extract (NGPE)} was collected, dried, and stored. In vitro increase in cell density for probiotic bacteria viz. Lactobacillus rhamnosus and Enterococcus faecalis (Log10 CFU/ml) were significantly higher (P < 0.01) in NGPE supplemented media (2.78 ± 0.11 and 2.77 ± 0.10) as compared to that on MOS (1.28 ± 0.05 and 2.49 ± 0.09) and glucose (1.09 ± 0.04 and 1.12 ± 0.04) supplemented media. In the in-vivo trial of six weeks duration with broiler chickens (Cobb-400), NGPE supplementation resulted in significantly higher growth in weeks IV (P < 0.05) and VI (P < 0.01) of age in comparison to MOS and AGP supplemented groups, a lower (P < 0.01) cumulative feed conversion ratio in comparison to MOS supplemented groups, and a higher (P < 0.01) cumulative protein efficiency ratio compared to MOS and AGP supplementation. NGPE supplementation also lowered lipid peroxidation (P < 0.01), increased reduced glutathione activity (P < 0.01) in chicken erythrocytes, and boosted the lactic acid bacteria count in the cecal contents (P < 0.01). This is the first report of the isolation of a paunch waste extract that increased the in vitro growth of probiotic bacteria and improved the production performance of broiler chickens.

2.
Int Immunopharmacol ; 126: 111213, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37995572

RESUMEN

Mastitis, an inflammatory disease of the mammary gland, imposes a significant financial burden on the dairy sector. However, the specific molecular mechanisms underlying their interactions with goat mammary epithelial cells (GMECs) remain poorly understood. This study aimed to investigate the transcriptomic response of GMECs during infection with E. coli and S. aureus, providing insights into the host-pathogen interactions. Differential expression of gene (DEGs) analysis was done to find genes and pathways dysregulated in the wake of infection. E. coli infection triggered a robust upregulation of immune response genes, including pro-inflammatory chemokines and cytokines as well as genes involved in tissue repair and remodeling. Conversely, S. aureus infection showed a more complex pattern, involving the activation of immune-related gene as well as those involved in autophagy, apoptosis and tissue remodeling. Furthermore, several key pathways, such as Toll-like receptor signaling and cytokine-cytokine receptor interaction, were differentially modulated in response to each pathogen. Understanding the specific responses of GMECs to these pathogens will provide a foundation for understanding the complex dynamics of infection and host response, offering potential avenues for the development of novel strategies to prevent and treat bacterial infections in both animals and humans.


Asunto(s)
Infecciones por Escherichia coli , Mastitis Bovina , Infecciones Estafilocócicas , Humanos , Femenino , Animales , Bovinos , Escherichia coli/fisiología , Staphylococcus aureus/fisiología , Regulación de la Expresión Génica , Cabras/genética , Cabras/metabolismo , Glándulas Mamarias Animales/metabolismo , Perfilación de la Expresión Génica , Citocinas/metabolismo , Células Epiteliales/metabolismo
3.
BMC Genomics ; 24(1): 616, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37845620

RESUMEN

BACKGROUND: Elucidating genome-wide structural variants including copy number variations (CNVs) have gained increased significance in recent times owing to their contribution to genetic diversity and association with important pathophysiological states. The present study aimed to elucidate the high-resolution CNV map of six different global buffalo breeds using whole genome resequencing data at two coverages (10X and 30X). Post-quality control, the sequence reads were aligned to the latest draft release of the Bubaline genome. The genome-wide CNVs were elucidated using a read-depth approach in CNVnator with different bin sizes. Adjacent CNVs were concatenated into copy number variation regions (CNVRs) in different breeds and their genomic coverage was elucidated. RESULTS: Overall, the average size of CNVR was lower at 30X coverage, providing finer details. Most of the CNVRs were either deletion or duplication type while the occurrence of mixed events was lesser in number on a comparative basis in all breeds. The average CNVR size was lower at 30X coverage (0.201 Mb) as compared to 10X (0.013 Mb) with the finest variants in Banni buffaloes. The maximum number of CNVs was observed in Murrah (2627) and Pandharpuri (25,688) at 10X and 30X coverages, respectively. Whereas the minimum number of CNVs were scored in Surti at both coverages (2092 and 17,373). On the other hand, the highest and lowest number of CNVRs were scored in Jaffarabadi (833 and 10,179 events) and Surti (783 and 7553 events) at both coverages. Deletion events overnumbered duplications in all breeds at both coverages. Gene profiling of common overlapped genes and longest CNVRs provided important insights into the evolutionary history of these breeds and indicate the genomic regions under selection in respective breeds. CONCLUSION: The present study is the first of its kind to elucidate the high-resolution CNV map in major buffalo populations using a read-depth approach on whole genome resequencing data. The results revealed important insights into the divergence of major global buffalo breeds along the evolutionary timescale.


Asunto(s)
Búfalos , Variaciones en el Número de Copia de ADN , Animales , Búfalos/genética , Genoma , Análisis de Secuencia de ADN , Genómica/métodos
4.
Front Vet Sci ; 10: 1192583, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37601760

RESUMEN

Introduction: The antiviral activity of different mutagens against single-stranded RNA viruses is well documented; however, their activity on the replication of double-stranded RNA viruses remains unexplored. This study aims to investigate the effect of different antivirals on the replication of a chicken embryo fibroblast-adapted Infectious Bursal Disease virus, FVSKG2. This study further explores the antiviral mechanism utilized by the most effective anti-IBDV agent. Methods: The cytotoxicity and anti-FVSKG2 activity of different antiviral agents (ribavirin, 5-fluorouracil, 5-azacytidine, and amiloride) were evaluated. The virus was serially passaged in chicken embryo fibroblasts 11 times at sub-cytotoxic concentrations of ribavirin, 5-fluorouracil or amiloride. Further, the possible mutagenic and non-mutagenic mechanisms utilized by the most effective anti-FVSKG2 agent were explored. Results and Discussion: Ribavirin was the least cytotoxic on chicken embryo fibroblasts, followed by 5-fluorouracil, amiloride and 5-azacytidine. Ribavirin inhibited the replication of FVSKG2 in chicken embryo fibroblasts significantly at concentrations as low as 0.05 mM. The extinction of FVSKG2 was achieved during serial passage of the virus in chicken embryo fibroblasts at ≥0.05 mM ribavirin; however, the emergence of a mutagen-resistant virus was not observed until the eleventh passage. Further, no mutation was observed in 1,898 nucleotides of the FVSKG2 following its five passages in chicken embryo fibroblasts in the presence of 0.025 mM ribavirin. Ribavarin inhibited the FVSKG2 replication in chicken embryo fibroblasts primarily through IMPDH-mediated depletion of the Guanosine Triphosphate pool of cells. However, other mechanisms like ribavirin-mediated cytokine induction or possible inhibition of viral RNA-dependent RNA polymerase through its interaction with the enzyme's active sites enhance the anti-IBDV effect. Ribavirin inhibits ds- RNA viruses, likely through IMPDH inhibition and not mutagenesis. The inhibitory effect may, however, be augmented by other non-mutagenic mechanisms, like induction of antiviral cytokines in chicken embryo fibroblasts or interaction of ribavirin with the active sites of RNA-dependent RNA polymerase of the virus.

5.
Tissue Cell ; 84: 102162, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37487256

RESUMEN

Peripheral nerve injury is one of the common disabling clinical conditions and around 50% of the cases end up in permanent impairment. Due to the lack of effective treatment options regenerative medicine employing stem cells is being evaluated. The presented study evaluated and compared regeneration potential of mesenchymal stem cells (MSCs) derived from bone marrow (BM) and adipose tissue (AD) in acute rabbit sciatic nerve injury (axonotmesis) model. A total of n = 54 grey giant rabbits were made subject of the study and divided equally into 3 groups: Control, BM-MSCs in Collagen I and AD-MSCs in Collagen I as per the treatment given. Iliac crest BM and omental AD was harvested from the same donor for isolation and culture of MSCs. The repair of sciatic nerve injury was evaluated on days 60 and 90. The clinical and histopathological scores and SEM morphology was better in cell treated groups as compared to the control. Morphology and histological studies revealed injured nerve in different levels of regenerative process. Gene expression was more than double for N-Cadherin in cell treated groups as compared to the control, especially at day 60. Between cell treated groups, BM-MSCs group showed better response as compared to the AD-MSCs, although statistically non-significant (p > 0.05). Incomplete nerve regeneration observed under various diagnostic parameters was in compliance to the incomplete clinical recovery at day 90. It was concluded that MSCs may improve sciatic nerve healing but fall short of complete regeneration at day 90, although BM-MSCs may have an edge over AD-MSCs.


Asunto(s)
Células Madre Mesenquimatosas , Traumatismos de los Nervios Periféricos , Animales , Conejos , Traumatismos de los Nervios Periféricos/terapia , Médula Ósea , Tejido Adiposo , Nervio Ciático , Colágeno Tipo I
6.
Microb Pathog ; 182: 106234, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37442216

RESUMEN

Growing antimicrobial resistance (AMR) is a threat to human and animal populations citing the limited available options. Alternative antimicrobial options or functional enhancement of currently available antimicrobials remains only options. One of the potential options seems stem cells especially the mesenchymal stem cells (MSCs) that show antimicrobial properties. These cells additionally have pro-healing effects that may plausibly improve healing outcomes. MSCs antimicrobial actions are mediated either through direct cell-cell contact or their secretome that enhances innate immune mediated antimicrobial activities. These cells synergistically enhance efficacy of currently available antimicrobials especially against the biofilms. Reciprocal action from antimicrobials on the MSCs functionality remains poorly understood. Currently, the main limitation with MSCs based therapy is their limited efficacy. This demands further understanding and can be enhanced through biotechnological interventions. One of the interventional options is the 'priming' to enhance MSCs resistance and specific expression potential. The available literature shows potential antimicrobial actions of MSCs both ex vivo as well as in vivo. The studies on veterinary species are very promising although limited by number and extensiveness in details for their utility as standard therapeutic agents. The current review aims to discuss the role of animals in AMR and the potential antimicrobial actions of MSCs in veterinary medicine. The review also discusses the limitations in their utilization as standard therapeutics.


Asunto(s)
Infecciones Bacterianas , Tratamiento Basado en Trasplante de Células y Tejidos , Células Madre Mesenquimatosas , Animales , Animales Domésticos , Infecciones Bacterianas/terapia , Infecciones Bacterianas/veterinaria , Tratamiento Basado en Trasplante de Células y Tejidos/veterinaria , Resistencia a Medicamentos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Virosis/terapia , Virosis/veterinaria , Secretoma , Péptidos Antimicrobianos/metabolismo
7.
Genes (Basel) ; 14(6)2023 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-37372463

RESUMEN

Potential single nucleotide polymorphisms (SNPs) were detected between two chicken breeds (Kashmir favorella and broiler) using deep RNA sequencing. This was carried out to comprehend the coding area alterations, which cause variances in the immunological response to Salmonella infection. In the present study, we identified high impact SNPs from both chicken breeds in order to delineate different pathways that mediate disease resistant/susceptibility traits. Samples (liver and spleen) were collected from Salmonella resistant (K. favorella) and susceptible (broiler) chicken breeds. Salmonella resistance and susceptibility were checked by different pathological parameters post infection. To explore possible polymorphisms in genes linked with disease resistance, SNP identification analysis was performed utilizing RNA seq data from nine K. favorella and ten broiler chickens. A total of 1778 (1070 SNPs and 708 INDELs) and 1459 (859 SNPs and 600 INDELs) were found to be specific to K. favorella and broiler, respectively. Based on our results, we conclude that in broiler chickens the enriched pathways mostly included metabolic pathways like fatty acid metabolism, carbon metabolism and amino acid metabolism (Arginine and proline metabolism), while as in K. favorella genes with high impact SNPs were enriched in most of the immune-related pathways like MAPK signaling pathway, Wnt signaling pathway, NOD-like receptor signaling pathway, etc., which could be a possible resistance mechanism against salmonella infection. In K. favorella, protein-protein interaction analysis also shows some important hub nodes, which are important in providing defense against different infectious diseases. Phylogenomic analysis revealed that indigenous poultry breeds (resistant) are clearly separated from commercial breeds (susceptible). These findings will offer fresh perspectives on the genetic diversity in chicken breeds and will aid in the genomic selection of poultry birds.


Asunto(s)
Pollos , Polimorfismo de Nucleótido Simple , Animales , Pollos/genética , RNA-Seq , Biología Computacional , Salmonella/genética
8.
Viruses ; 15(4)2023 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-37112828

RESUMEN

Vaccination is widely used to control Infectious Bronchitis in poultry; however, the limited cross-protection and safety issues associated with these vaccines can lead to vaccination failures. Keeping these limitations in mind, the current study explored the antiviral potential of phytocompounds against the Infectious Bronchitis virus using in silico approaches. A total of 1300 phytocompounds derived from fourteen botanicals were screened for their potential ability to inhibit the main protease, papain-like protease or RNA-dependent RNA-polymerase of the virus. The study identified Methyl Rosmarinate, Cianidanol, Royleanone, and 6,7-Dehydroroyleanone as dual-target inhibitors against any two of the key proteins. At the same time, 7-alpha-Acetoxyroyleanone from Rosmarinus officinalis was found to be a multi-target protein inhibitor against all three proteins. The potential multi-target inhibitor was subjected to molecular dynamics simulations to assess the stability of the protein-ligand complexes along with the corresponding reference ligands. The findings specified stable interactions of 7-alpha-Acetoxyroyleanone with the protein targets. The results based on the in silico study indicate that the phytocompounds can potentially inhibit the essential proteins of the Infectious Bronchitis virus; however, in vitro and in vivo studies are required for validation. Nevertheless, this study is a significant step in exploring the use of botanicals in feed to control Infectious Bronchitis infections in poultry.


Asunto(s)
Bronquitis , Virus de la Bronquitis Infecciosa , Animales , Virus de la Bronquitis Infecciosa/genética , Pollos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Antivirales/farmacología , Aves de Corral , Bronquitis/prevención & control , ARN
9.
BMC Genomics ; 24(1): 214, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37098463

RESUMEN

Salmonella enterica serovar typhimurium is the cause of significant morbidity and mortality worldwide that causes economic losses to poultry and is able to cause infection in humans. Indigenous chicken breeds are a potential source of animal protein and have the added advantage of being disease resistant. An indigenous chicken, Kashmir favorella and commercial broiler were selected for understanding the mechanism of disease resistance. Following infection in Kashmir favorella, three differentially expressed genes Nuclear Factor Kappa B (NF-κB1), Forkhead Box Protein O3 (FOXO3) and Paired box 5 (Pax5) were identified. FOXO3, a transcriptional activator, is the potential marker of host resistance in Salmonella infection. NF-κB1 is an inducible transcription factor which lays the foundation for studying gene network of the innate immune response of Salmonella infection in chicken. Pax5 is essential for differentiation of pre-B cells into mature B cell. The real time PCR analysis showed that in response to Salmonella Typhimurium infection a remarkable increase of NF-κB1 (P˂0.01), FOXO3 (P˂0.01) gene expression in liver and Pax5 (P˂0.01) gene expression in spleen of Kashmir favorella was observed. The protein-protein interaction (PPI) and protein-TF interaction network by STRINGDB analysis suggests that FOXO3 is a hub gene in the network and is closely related to Salmonella infection along with NF-κB1. All the three differentially expressed genes (NF-κB1, FOXO3 and PaX5) showed their influence on 12 interacting proteins and 16 TFs, where cyclic adenosine monophosphate Response Element Binding protein (CREBBP), erythroblast transformation-specific (ETSI), Tumour-protein 53(TP53I), IKKBK, lymphoid enhancer-binding factor-1 (LEF1), and interferon regulatory factor-4 (IRF4) play role in immune responses. This study shall pave the way for newer strategies for treatment and prevention of Salmonella infection and may help in increasing the innate disease resistance.


Asunto(s)
Pollos , Salmonelosis Animal , Humanos , Animales , Pollos/genética , Salmonella typhimurium/genética , Factores de Transcripción/genética , Resistencia a la Enfermedad , Salmonelosis Animal/genética , Perfilación de la Expresión Génica
10.
Viruses ; 15(3)2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36992357

RESUMEN

Marek's disease virus (MDV), a highly cell-associated oncogenic α-herpesvirus, is the etiological agent of T cell lymphomas and neuropathic disease in chickens known as Marek's disease (MD). Clinical signs of MD include neurological disorders, immunosuppression, and lymphoproliferative lymphomas in viscera, peripheral nerves, and skin. Although vaccination has greatly reduced the economic losses from MD, the molecular mechanism of vaccine-induced protection is largely unknown. To shed light on the possible role of T cells in immunity induced by vaccination, we vaccinated birds after the depletion of circulating T cells through the IP/IV injection of anti-chicken CD4 and CD8 monoclonal antibodies, and challenged them post-vaccination after the recovery of T cell populations post-treatment. There were no clinical signs or tumor development in vaccinated/challenged birds with depleted CD4+ or CD8+ T cells. The vaccinated birds with a combined depletion of CD4+ and CD8+ T cells, however, were severely emaciated, with atrophied spleens and bursas. These birds were also tumor-free at termination, with no virus particles detected in the collected tissues. Our data indicated that CD4+ and CD8+ T lymphocytes did not play a critical role in vaccine-mediated protection against MDV-induced tumor development.


Asunto(s)
Herpesvirus Gallináceo 2 , Linfoma , Enfermedad de Marek , Vacunas Virales , Animales , Linfocitos T CD8-positivos , Pollos
11.
Inflamm Regen ; 43(1): 17, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36849892

RESUMEN

Extracellular vesicles (EVs) are nano-sized lipid-bilayer encapsulated vesicles produced by the cells. These EVs are released into the surrounding space by almost all cell types. The EVs help in intercellular communication via their payloads which contain various proteins, lipids, and nucleic acids generated from the donor cells and allow for synergistic responses in surrounding cells. In recent years, EVs have been increasingly important in treating infectious diseases, including respiratory tract infections, urinary tract infections, wound infections, sepsis, and intestinal infections. Studies have confirmed the therapeutic value of mesenchymal stem cell-derived EVs (MSC-EVs) for treating infectious diseases to eliminate the pathogen, modulate the resistance, and restore tissue damage in infectious diseases. This can be achieved by producing antimicrobial substances, inhibiting pathogen multiplication, and activating macrophage phagocytic activity. Pathogen compounds can be diffused by inserting them into EVs produced and secreted by host cells or by secreting them as microbial cells producing EVs carrying signalling molecules and DNA shielding infected pathogens from immune attack. EVs play a key role in infectious pathogenesis and hold great promise for developing innovative treatments. In this review, we discuss the role of MSC-EVs in treating various infectious diseases.

12.
Cell Commun Signal ; 21(1): 3, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36604713

RESUMEN

SCARB1 belongs to class B of Scavenger receptors (SRs) that are known to be involved in binding and endocytosis of various pathogens. SRs have emerging role in regulating innate immunity and host-pathogen interactions by acting in co-ordination with Toll-like receptors.Query Little is known about the function of SCARB1 in milk-derived mammary epithelial cells (MECs). This study reports the role of SCARB1 in infection and its potential association in TLR4 signaling on bacterial challenge in Goat mammary epithelial cells (GMECs). The novelty in the establishment of MEC culture lies in the method that aims to enhance the viability of the cells with intact characteristics upto a higher passage number. We represent MEC culture to be used as a potential infection model for deeper understanding of animal physiology especially around the mammary gland. On E.coli challenge the expression of SCARB1 was significant in induced GMECs at 6 h. Endoribonuclease-esiRNA based silencing of SCARB1 affects the expression of TLR4 and its pathways i.e. MyD88 and TRIF pathways on infection. Knockdown also affected the endocytosis of E.coli in GMECs demonstrating that E.coli uses SCARB1 function to gain entry in cells. Furthermore, we predict 3 unique protein structures of uncharacterized SCARB1 (Capra hircus) protein. Overall, we highlight SCARB1 as a main participant in host defence and its function in antibacterial advances to check mammary gland infections. Video Abstract.


Asunto(s)
Células Epiteliales , Infecciones por Escherichia coli , Glándulas Mamarias Animales , Receptores Depuradores , Receptor Toll-Like 4 , Animales , Endocitosis , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Escherichia coli , Receptores Depuradores/metabolismo , Transducción de Señal , Receptor Toll-Like 4/metabolismo , Cabras , Glándulas Mamarias Animales/microbiología , Infecciones por Escherichia coli/veterinaria
13.
Curr Res Transl Med ; 71(1): 103364, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36436354

RESUMEN

Mesenchymal stem cells (MSCs) due to their characteristic properties have a potential to treat osteoarthritis, one of the major growing joint problems. MSCs show differential ex vivo chondrogenic potential on the basis of source that remains to be validated under in vivo environment. This study compared chondrogenic potential of MSCs derived from two common sources, adipose tissue (AD) and bone marrow (BM) under ex vivo and in vivo environments. The randomized placebo controlled osteochondral defect (OCD) study divided n = 72 rabbits equally into Control, AD-MSCs and BM-MSCs groups. Ex vivo chondrogenic induction resulted in an increased aggrecan fold expression in BM-MSCs and AD-MSCs. The former cell type had significantly (p<0.05) higher fold expression as compared to the latter. The cell treated OCDs had significantly reduced gene expression for inflammatory markers (IL-6, IL-8 and TNF-α) as compared to the control. In OCD study, radiography, MRI, gross observation, histopathology and SEM revealed that the cell treated defects were early filled by the tissue that had better surface architecture and matrices as compared to the control. BM-MSCs treated defects had better scores especially for gross and histopathology than the AD-MSCs. Gene expression for osteochondral regulation and cartilaginous matrices was higher in BM-MSCs group while only for matrices including the Col I in AD-MSCs as compared to the control. It was concluded that OCD in the cell treated groups are filled early with mostly a fibrocartilaginous to hyaline tissue. BM-MSCs may have an edge over AD-MSCs in OCD repair.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Células Madre Mesenquimatosas , Animales , Conejos , Tejido Adiposo
14.
Curr Stem Cell Res Ther ; 18(6): 740-749, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35792118

RESUMEN

The bovine mammary gland has vital importance in the dairy sector, as it is considered a source of basic dairy product, milk. Mammary gland affections are widespread, which affect the dairy industry economically and pose a potential public health hazard. Current therapeutic options are ineffective in controlling the infection and regenerating the gland effectively. Antimicrobials commonly used against mastitis make their way into the milk . In order to find a solution to these problems, advanced therapeutic options, like the one for stem cells, are considered. Mammary gland stem cells (MaSCs) are considered to maintain tissue homeostasis. The characterization of these cells and their derived lineages (progenitor cells and mammary epithelial cells) may potentially provide the physiological status or production potential of the gland. However, current isolation methods are cumbersome and fall short to isolate a pure line of cattle MaSCs from progenitors or other differentiated epithelial cells. An alternative to the therapeutic application of MaSCs is the mesenchymal stem cell (MSC). These cells can potentially control microbial infection, show anti-inflammatory and other pro-healing effects, and furthermore enhance mammary epithelial cell secretory potential to ensure tissue regeneration. The current review focuses on MaSCs and MSCs properties in light of the bovine mammary gland regeneration.


Asunto(s)
Células Madre Mesenquimatosas , Investigación con Células Madre , Femenino , Bovinos , Animales , Medicina Regenerativa , Diferenciación Celular , Glándulas Mamarias Animales/fisiología
15.
Brief Funct Genomics ; 22(2): 76-96, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35809340

RESUMEN

Medical research has been revolutionized after the publication of the full human genome. This was the major landmark that paved the way for understanding the biological functions of different macro and micro molecules. With the advent of different high-throughput technologies, biomedical research was further revolutionized. These technologies constitute genomics, transcriptomics, proteomics, metabolomics, etc. Collectively, these high-throughputs are referred to as multi-omics technologies. In the biomedical field, these omics technologies act as efficient and effective tools for disease diagnosis, management, monitoring, treatment and discovery of certain novel disease biomarkers. Genotyping arrays and other transcriptomic studies have helped us to elucidate the gene expression patterns in different biological states, i.e. healthy and diseased states. Further omics technologies such as proteomics and metabolomics have an important role in predicting the role of different biological molecules in an organism. It is because of these high throughput omics technologies that we have been able to fully understand the role of different genes, proteins, metabolites and biological pathways in a diseased condition. To understand a complex biological process, it is important to apply an integrative approach that analyses the multi-omics data in order to highlight the possible interrelationships of the involved biomolecules and their functions. Furthermore, these omics technologies offer an important opportunity to understand the information that underlies disease. In the current review, we will discuss the importance of omics technologies as promising tools to understand the role of different biomolecules in diseases such as cancer, cardiovascular diseases, neurodegenerative diseases and diabetes.


Asunto(s)
Investigación Biomédica , Multiómica , Humanos , Genómica , Proteómica , Metabolómica , Biomarcadores
16.
Genomics ; 114(5): 110475, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36064074

RESUMEN

Salmonella, one of the major infectious diseases in poultry, causes considerable economic losses in terms of mortality and morbidity, especially in countries that lack effective vaccination programs. Besides being resistant to diseases, indigenous chicken breeds are also a potential source of animal protein in developing countries. For understanding the disease resistance, an indigenous chicken line Kashmir faverolla, and commercial broiler were selected. RNA-seq was performed after challenging the chicken with Salmonella Typhimurium. Comparative differential expression results showed that following infection, a total of 3153 genes and 1787 genes were differentially expressed in the liver and spleen, respectively. The genes that were differentially expressed included interleukins, cytokines, NOS2, Avß-defensins, toll-like receptors, and other immune-related gene families. Most of the genes and signaling pathways involved in the innate and adaptive immune responses against bacterial infection were significantly enriched in the Kashmir faverolla. Pathway analysis revealed that most of the enriched pathways were MAPK signaling pathway, NOD-like receptor signaling pathway, TLR signaling pathway, PPAR signaling pathway, endocytosis, etc. Surprisingly some immune-related genes like TLRs were upregulated in the susceptible chicken breed. On postmortem examination, the resistant birds showed small lesions in the liver compared to large necrotic lesions in susceptible birds. The pathological manifestations and RNA sequencing results suggest a balancing link between resistance and infection tolerance in Kashmir faverolla. Here we also developed an online Poultry Infection Database (https://skuastk.org/pif/index.html), the first publicly available gene expression resource for disease resistance in chickens. The available database not only shows the data for gene expression in chicken tissues but also provides quick search, visualization and download capacity.


Asunto(s)
Pollos , Enfermedades de las Aves de Corral , Animales , Pollos/genética , Citocinas/genética , Defensinas/genética , Resistencia a la Enfermedad/genética , Expresión Génica , Proteínas NLR/genética , Receptores Activados del Proliferador del Peroxisoma/genética , Aves de Corral/genética , Enfermedades de las Aves de Corral/genética , RNA-Seq , Salmonella/genética , Análisis de Secuencia de ARN , Receptores Toll-Like/genética
17.
Curr Res Transl Med ; 70(4): 103356, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35940080

RESUMEN

The study was aimed to evaluate and compare the healing potential of mesenchymal stem cells (MSCs) derived from two common sources (iliac crest derived bone marrow and omental fat) in a full thickness skin wound model. Bone marrow derived MSCs clinical efficacy in the repair of cattle teat fistulae (cutaneous and muco-cutaneous wounds) was also evaluated. In a completely randomized placebo controlled experimental full thickness skin wound model, n=36 were randomly divided into three equal groups: groups I, II and III receiving Phosphate buffered saline (PBS), BM-MSCs and adipose tissue MSCs (AD-MSCs), respectively. Grossly early reduction in inflammation and enhanced epithelialization in the cell-treated groups as compared to the control was seen. Microscopy, ultramicroscopy, gene expression analysis and mechanical testing revealed better and early matrix formation with a reduced scar formation and a higher tensile strength in the cell-treated groups as compared to the control. An overall comparable healing in the cell treated groups was observed, although BM-MSCs had led to the better matrix formation tending to scarless healing while the AD-MSCs had led to the early wound closure with a good tissue strength. In the case controlled bovine clinical teat injuries study (n=17) repaired surgically, BM-MSCs (n=13) or PBS (n=4) was injected locally. In surgico-MSCs treated cases, 84.6% non-recurrence rate was observed as compared to the 50% seen in the control. It was concluded that MSCs irrespective of the donor tissue have potential to improve healing of full thickness cutaneous wounds and/ fistulae.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Células Madre Mesenquimatosas , Animales , Bovinos , Tejido Adiposo , Cicatriz
18.
Vet Anim Sci ; 17: 100262, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35856004

RESUMEN

Noncommunicable diseases such as cardiovascular disease, obesity, diabetes, and cancer now outnumber all other health ailments in humans globally due to abrupt changes in lifestyle following the industrial revolution. The industrial revolution has also intensified livestock farming, resulting in an increased demand for productivity and stressed animals. The livestock industry faces significant challenges from a projected sharp increase in global food and high animal protein demand. Nutrition genomics holds great promise for the future as its advances have opened up a whole new world of disease understanding and prevention. Nutrigenomics is the study of the interactions between genes and diet. It investigates molecular relationships between nutrients and genes to identify how even minor modifications could potentially alter animal and human health/performance by using techniques like proteomics, transcriptomics, metabolomics, and lipidomics. Dietary modifications mostly studied in livestock focus mainly on health and production traits through protein, fat, mineral, and vitamin supplementation changes. Nutrigenomics meticulously selects nutrients for fine-tuning the expression of genes that match animal/human genotypes for better health, productivity, and the environment. As a step forward, nutrigenomics integrates nutrition, molecular biology, genomics, bioinformatics, molecular medicine, and epidemiology to better understand the role of food as an epigenetic factor in the occurrence of these diseases. This review aims to provide a comprehensive overview of the fundamental concepts, latest advances, and studies in the field of nutrigenomics, emphasizing the interaction of diet with gene expression, and how it relates to human and animal health along with its human-animal interphase.

19.
Front Vet Sci ; 9: 866614, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35720847

RESUMEN

Salmonella enterica serovar typhimurium (S. typhimurium) is the leading cause of foodborne illness. Since Salmonella continues to have a detrimental effect on public health, there is an ongoing need to develop more advanced methods for combating Salmonellosis in foods before they reach consumers. In addition, the quest for alternative natural products has recently intensified due to increasingly stringent regulations regarding the use of antibiotics as growth promoters and consumer demand for antibiotic-free poultry products. This study evaluated the effect of Ajwain extract (AJE) on immune response and antioxidant status in broiler chicks challenged with Salmonella typhimurium. The chicks were infected with S. typhimurium and were divided into the different groups, except for the control group (CON). The challenged chicks received different treatments with 3 × 109 colony-forming unit (CFU) AciproTM-WS probiotic (PRO), 200 mg/kg Ajwain extract (AJE), 200 mg/100 kg of enrofloxacin (ENR), and a combination of 3 × 109 CFU AciproTM-WS probiotic and 200 mg/kg Ajwain extract (COM). Five days posttreatment, the tissue samples (liver and spleen) were analyzed. The results showed that basal diet supplemented with Ajwain extract (AJE) and a combination of probiotic and Ajwain extract (COM) significantly (P < 0.0.5) reduced the cytokine expression in broiler chicks challenged with S. typhimurium. Our findings suggest that AJE can clear the bacterial infection, improve antioxidant status, and suppress the inflammation response. Additionally, AJE supplementation significantly mitigated the S. typhimurium-induced increase in the interleukin-6 (IL-6) (liver and spleen), interleukin-8 (IL-8) (liver and spleen), interleukin-17A (IL-17A) (liver and spleen), and inducible nitric oxide (iNOS) (spleen and liver) levels (P < 0.05). We conclude that Ajwain is an efficient feed additive with antioxidant and anti-inflammatory properties. The interaction networks developed in this study provide a novel lead that could be targeted for anti-inflammatory and antioxidant properties.

20.
PeerJ ; 10: e13029, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35251787

RESUMEN

Milk is an excellent source of nutrients for humans. Therefore, in order to enhance the quality and production of milk in cattle, it is interesting to examine the underlying mechanisms. A number of new investigations and research have found that, circRNA; a specific class of non-coding RNAs, is linked with the development of mammary gland and lactation. In the present study, genome wide identification and expression of the circRNAs in mammary epithelial cells of two distinct cattle breeds viz Jersey and Kashmiri at peak lactation was conducted. We reported 1554 and 1286 circRNA in Jersey and Kashmiri cattle, respectively, with 21 circRNAs being differentially expressed in the two breeds. The developmental genes of the established differentially expressed circRNAs were found to be largely enriched in antioxidant activity, progesterone, estradiol, lipid, growth hormone, and drug response. Certain pathways like MAPK, IP3K and immune response pathways were found significantly enriched in KEGG analysis. These results add to our understanding of the controlling mechanisms connected with the lactation process, as well as the function of circRNAs in bovine milk synthesis. Additionally, the comparative analysis of differentially expressed circRNAs showed significant conservation across different species.


Asunto(s)
Leche , ARN Circular , Femenino , Humanos , Animales , Bovinos , Leche/metabolismo , ARN Circular/genética , Glándulas Mamarias Animales/metabolismo , Lactancia/genética , Células Epiteliales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...