Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Heliyon ; 10(9): e30025, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38737273

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory process in the airways that results in airflow obstruction. It is mainly linked to cigarette smoke exposure. Th17 cells have a role in the pathogenesis of COPD by secreting pro-inflammatory cytokines, which cause hyperinflammation and progression of the disease. This study aimed to assess the potential therapeutic effects of nanocurcumin on the Th17 cell frequency and its responses in moderate and severe COPD patients. This study included 20 patients with severe COPD hospitalized in an intensive care unit (ICU) and 20 patients with moderate COPD. Th17 cell frequency, Th17-related factors gene expression (RAR-related orphan receptor t (RORγt), IL-17, IL-21, IL-23, and granulocyte-macrophage colony-stimulating factor), and serum levels of Th17-related cytokines were assessed before and after treatment in both placebo and nanocurcumin-treated groups using flow cytometry, real-time PCR, and ELISA, respectively. According to our findings, in moderate and severe nanocurcumin-treated COPD patients, there was a substantial reduction in the frequency of Th17 cells, mRNA expression, and cytokines secretion level of Th17-related factors compared to the placebo group. Furthermore, after treatment, the metrics mentioned above were considerably lower in the nanocurcumin-treated group compared to before treatment. Nanocurcumin has been shown to decrease the number of Th17 cells and their related inflammatory cytokines in moderate and severe COPD patients. As a result, it might be used as an immune-modulatory agent to alleviate the patient's inflammatory state.

2.
ACS Nano ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38752408

RESUMEN

Concurrent structural and electronic transformations in VO2 thin films are of 2-fold importance: enabling fine-tuning of the emergent electrical properties in functional devices, yet creating an intricate interfacial domain structure of transitional phases. Despite the importance of understanding the structure of VO2 thin films, a detailed real-space atomic structure analysis in which the oxygen atomic columns are also resolved is lacking. Moreover, intermediate atomic structures have remained elusive due to the lack of robust atomically resolved quantitative analysis. Here, we directly resolve both V and O atomic columns and discover the presence of intermediate monoclinic (M2) phase nanolayers (less than 2 nm thick) in epitaxially grown VO2 films on a TiO2 (001) substrate, where the dominant part of VO2 undergoes a transition from the tetragonal (rutile) phase to the monoclinic M1 phase. Strain analysis suggests that the presence of the M2 phase is related to local strain gradients near the TiO2/VO2 interface. We unfold the crucial role of imaging the spatial configurations of the oxygen anions (in addition to V cations) by utilizing atomic-resolution electron microscopy. Our approach can be used to unravel the structural transitions in a wide range of correlated oxides, offering substantial implications for, e.g., optoelectronics and ferroelectrics.

3.
J Am Chem Soc ; 146(18): 12808-12818, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38668701

RESUMEN

The surface chemistry of colloidal semiconductor nanocrystals (QDs) profoundly influences their physical and chemical attributes. The insulating organic shell ensuring colloidal stability impedes charge transfer, thus limiting optoelectronic applications. Exchanging these ligands with shorter inorganic ones enhances charge mobility and stability, which is pivotal for using these materials as active layers for LEDs, photodetectors, and transistors. Among those, InP QDs also serve as a model for surface chemistry investigations. This study focuses on group III metal salts as inorganic ligands for InP QDs. We explored the ligand exchange mechanism when metal halide, nitrate, and perchlorate salts of group III (Al, In Ga), common Lewis acids, are used as ligands for the conductive inks. Moreover, we compared the exchange mechanism for two starting model systems: InP QDs capped with myristate and oleylamine as X- and L-type native organic ligands, respectively. We found that all metal halide, nitrate, and perchlorate salts dissolved in polar solvents (such as n-methylformamide, dimethylformamide, dimethyl sulfoxide, H2O) with various polarity formed metal-solvent complex cations [M(Solvent)6]3+ (e.g., [Al(MFA)6]3+, [Ga(MFA)6]3+, [In(MFA)6]3+), which passivated the surface of InP QDs after the removal of the initial organic ligand. All metal halide capped InP/[M(Solvent)6]3+ QDs show excellent colloidal stability in polar solvents with high dielectric constant even after 6 months in concentrations up to 74 mg/mL. Our findings demonstrate the dominance of dissociation-complexation mechanisms in polar solvents, ensuring colloidal stability. This comprehensive understanding of InP QD surface chemistry paves the way for exploring more complex QD systems such as InAs and InSb QDs.

4.
Nat Commun ; 15(1): 1428, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365898

RESUMEN

Lead-free, silicon compatible materials showing large electromechanical responses comparable to, or better than conventional relaxor ferroelectrics, are desirable for various nanoelectromechanical devices and applications. Defect-engineered electrostriction has recently been gaining popularity to obtain enhanced electromechanical responses at sub 100 Hz frequencies. Here, we report record values of electrostrictive strain coefficients (M31) at frequencies as large as 5 kHz (1.04×10-14 m2/V2 at 1 kHz, and 3.87×10-15 m2/V2 at 5 kHz) using A-site and oxygen-deficient barium titanate thin-films, epitaxially integrated onto Si. The effect is robust and retained upon cycling upto 6 million times. Our perovskite films are non-ferroelectric, exhibit a different symmetry compared to stoichiometric BaTiO3 and are characterized by twin boundaries and nano polar-like regions. We show that the dielectric relaxation arising from the defect-induced features correlates well with the observed giant electrostriction-like response. These films show large coefficient of thermal expansion (2.36 × 10-5/K), which along with the giant M31 implies a considerable increase in the lattice anharmonicity induced by the defects. Our work provides a crucial step forward towards formulating guidelines to engineer large electromechanical responses even at higher frequencies in lead-free thin films.

5.
Regen Ther ; 24: 630-641, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38034858

RESUMEN

Recently, the demand for organ transplantation has promptly increased due to the enhanced incidence of body organ failure, the increasing efficiency of transplantation, and the improvement in post-transplant outcomes. However, due to a lack of suitable organs for transplantation to fulfill current demand, significant organ shortage problems have emerged. Developing efficient technologies in combination with tissue engineering (TE) has opened new ways of producing engineered tissue substitutes. The use of natural nanoparticles (NPs) such as nanocellulose (NC) and nano-lignin should be used as suitable candidates in TE due to their desirable properties. Many studies have used these components to form scaffolds and three-dimensional (3D) cultures of cells derived from different tissues for tissue repair. Interestingly, these natural NPs can afford scaffolds a degree of control over their characteristics, such as modifying their mechanical strength and distributing bioactive compounds in a controlled manner. These bionanomaterials are produced from various sources and are highly compatible with human-derived cells as they are derived from natural components. In this review, we discuss some new studies in this field. This review summarizes the scaffolds based on NC, counting nanocrystalline cellulose and nanofibrillated cellulose. Also, the efficient approaches that can extract cellulose with high purity and increased safety are discussed. We concentrate on the most recent research on the use of NC-based scaffolds for the restoration, enhancement, or replacement of injured organs and tissues, such as cartilage, skin, arteries, brain, and bone. Finally, we suggest the experiments and promises of NC-based TE scaffolds.

6.
Mater Horiz ; 10(11): 5235-5245, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37740285

RESUMEN

Networks and systems which exhibit brain-like behavior can analyze information from intrinsically noisy and unstructured data with very low power consumption. Such characteristics arise due to the critical nature and complex interconnectivity of the brain and its neuronal network. We demonstrate a system comprising of multilayer hexagonal boron nitride (hBN) films contacted with silver (Ag), which can uniquely host two different self-assembled networks, which are self-organized at criticality (SOC). This system shows bipolar resistive switching between the high resistance state (HRS) and the low resistance state (LRS). In the HRS, Ag clusters (nodes) intercalate in the van der Waals gaps of hBN forming a network of tunnel junctions, whereas the LRS contains a network of Ag filaments. The temporal avalanche dynamics in both these states exhibit power-law scaling, long-range temporal correlation, and SOC. These networks can be tuned from one to another with voltage as a control parameter. For the first time, two different neural networks are realized in a single CMOS compatible, 2D material platform.

7.
Iran J Allergy Asthma Immunol ; 22(3): 233-244, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37524660

RESUMEN

An imbalance between regulatory T (Treg) and T-helper (Th)-17 cells has been implicated in the pathogenesis of coronavirus disease 2019 (COVID-19). Mesenchymal stem cells (MSCs) exert immunomodulatory properties through secreting exosomes. This study aimed to assess the effect of MSC-derived exosomes (MSC-Exo) on the differentiation of peripheral blood mononuclear cells (PBMCs) into  Tregs from patients with COVID-19. Exosomes were isolated from adipose tissue-derived MSCs. PBMCs were separated from the whole blood of COVID-19 patients (n=20). Treg frequency was assessed before and 48 hours after treatment of PBMCs with MSC-Exo using flow cytometry. Expression of FOXP3 and cytokine genes, and the concentration of cytokines associated with Tregs, were assessed before and after treatment with MSC-Exo. The frequency of CD4+CD25+CD127-  Tregs was significantly higher after treating PBMCs with MSC-Exo (6.695±2.528) compared to before treatment (4.981±2.068). The expressions of transforming growth factor (TGF)-ß1, interleukin (IL)-10, and FOXP3 were significantly upregulated in MSC-Exo-treated PBMCs. The concentration of IL-10 increased significantly after treatment (994.7±543.9 pg/mL) of PBMCs with MSC-Exo compared with before treatment (563.5±408.6 pg/mL). The concentration of TGF-ß was significantly higher in the supernatant of PBMCs after treatment with MSC-Exo (477.0±391.1 pg/mL) than PBMCs before treatment (257.7±226.3 pg/mL). MSC-Exo has the potential to raise anti-inflammatory responses by induction of  Tregs, potentiating its therapeutic effects in COVID-19.


Asunto(s)
COVID-19 , Exosomas , Células Madre Mesenquimatosas , Humanos , Linfocitos T Reguladores , Leucocitos Mononucleares , Células Madre Mesenquimatosas/metabolismo , Factores de Transcripción Forkhead/metabolismo
8.
Inflammopharmacology ; 31(6): 3029-3036, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37436523

RESUMEN

BACKGROUND: Complementary ozone therapy has been identified as a revolutionary medical technique for a number of goals and ailments. At the present, it has been shown that ozone has medicinal qualities, such as antibacterial, antifungal, and antiparasitic properties. Coronavirus (SARS-CoV-2) is quickly spread over the globe. Cytokine storms and oxidative stress seem to play a substantial role in the most of acute attacks of the disease. The aim of this research was to assess the therapeutic advantages of complementary ozone therapy on the cytokine profile and antioxidant status in COVID-19 patients. METHODS: The statistical sample of this study included two hundred patients with COVID-19. One hundred COVID-19 patients (treatment group) received 240 ml of the patient's blood and an equal volume of O2/O3 gas at a concentration of 35-50 µg/ml daily, which gradually increased in concentration, and were kept for 5-10 days and one hundred patients (control group) received standard treatment. The secretion levels of IL-6, TNF-α, IL-1ß, IL-10 cytokines, SOD, CAT and GPx were compared between control patients (standard treatment) and standard treatment plus intervention (ozone) before and after treatment. RESULTS: The findings indicated a significant decrease in the level of IL-6, TNF-α, IL-1ß in group receiving complementary ozone therapy in compared with control group. Furthermore, a significant increase was found in the level of IL-10 cytokine. Moreover, SOD, CAT and GPx levels revealed a significant increase in complementary ozone therapy group compared to control group. CONCLUSIONS: Our results revealed that complementary ozone therapy can be used as a medicinal complementary therapy to reduce and control inflammatory cytokines and oxidative stress status in patients with COVID-19 as revealed its antioxidant and anti-inflammatory effects.


Asunto(s)
COVID-19 , Ozono , Humanos , COVID-19/terapia , Antioxidantes/uso terapéutico , SARS-CoV-2 , Interleucina-10 , Factor de Necrosis Tumoral alfa , Interleucina-6 , Ozono/uso terapéutico , Citocinas , Superóxido Dismutasa
10.
Heliyon ; 9(5): e15489, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37153436

RESUMEN

Diabetes is a highly common metabolic disorder in advanced societies. One of the causes of diabetes is insulin resistance, which is associated with a loss of sensitivity to insulin-sensitive cells. Insulin resistance develops in the body of a person prone to diabetes many years before diabetes development. Insulin resistance is associated with complications such as hyperglycemia, hyperlipidemia, and compensatory hyperinsulinemia and causes liver inflammation, which, if left untreated, can lead to cirrhosis, fibrosis, and even liver cancer. Metformin is the first line of treatment for patients with diabetes, which lowers blood sugar and increases insulin sensitivity by inhibiting gluconeogenesis in liver cells. The use of metformin has side effects, including a metallic taste in the mouth, vomiting, nausea, diarrhea, and upset stomach. For this reason, other treatments, along with metformin, are being developed. Considering the anti-inflammatory role of mesenchymal stem cells (MSCs) derived exosomes, their use seems to help improve liver tissue function and prevent damage caused by inflammation. This study investigated the anti-inflammatory effect of Wharton's jelly MSCs derived exosomes in combination with metformin in the HepG2 cells insulin resistance model induced by high glucose. This study showed that MSCs derived exosomes as an anti-inflammatory agent in combination with metformin could increase the therapeutic efficacy of metformin without needing to change metformin doses by decreasing inflammatory cytokines production, including IL-1, IL-6, and TNF-α and apoptosis in HepG2 cells.

11.
Health Care Manag Sci ; 26(2): 238-260, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37243837

RESUMEN

Surgery demand is an uncertain parameter in addressing the problem of surgery block allocations, and its typical variability should be considered to ensure the feasibility of surgical planning. We develop two models, a stochastic recourse programming model and a two-stage stochastic optimization (SO) model with incorporated risk measure terms in the objective functions to determine a planning decision that is made to allocate surgical specialties to operating rooms (ORs). Our aim is to minimize the costs associated with postponements and unscheduled demands as well as the inefficient use of OR capacity. The results of these models are compared using a case of a real-life hospital to determine which model better copes with uncertainty. We propose a novel framework to transform the SO model based on its deterministic counterpart. Three SO models are proposed with respect to the variability and infeasibility of the measures of the objective function to encode the construction of the SO framework. The analysis of the experimental results demonstrates that the SO model offers better performance under a highly volatile demand environment than the recourse model. The originality of this work lies in its use of SO transformation framework and its development of stochastic models to address the problem of surgery capacity allocation based on a real case.


Asunto(s)
Modelos Teóricos , Quirófanos , Humanos , Incertidumbre , Hospitales
12.
ACS Appl Mater Interfaces ; 15(18): 22672-22683, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37122126

RESUMEN

Over the past few decades, telluride-based chalcogenide multilayers, such as PbSeTe/PbTe, Bi2Te3/Sb2Te3, and Bi2Te3/Bi2Se3, were shown to be promising high-performance thermoelectric films. However, the stability of performance in operating environments, in particular, influenced by intermixing of the sublayers, has been studied rarely. In the present work, the nanostructure, thermal stability, and thermoelectric power factor of Sb2Te3/Ge1+xTe multilayers prepared by pulsed laser deposition are investigated by transmission electron microscopy and Seebeck coefficient/electrical conductivity measurements performed during thermal cycling. Highly textured Sb2Te3 films show p-type semiconducting behavior with superior power factor, while Ge1+xTe films exhibit n-type semiconducting behavior. The elemental mappings indicate that the as-deposited multilayers have well-defined layered structures. Upon heating to 210 °C, these layer structures are unstable against intermixing of sublayers; nanostructural changes occur on initial heating, even though the highest temperature is close to the deposition temperature. Furthermore, the diffusion is more extensive at domain boundaries leading to locally inclined structures there. The Sb2Te3 sublayers gradually dissolve into Ge1+xTe. This dissolution depends markedly on the relative Ge1+xTe film thickness. Rather, full dissolution occurs rapidly at 210 °C when the Ge1+xTe sublayer is substantially thicker than that of Sb2Te3, whereas the dissolution is very limited when the Ge1+xTe sublayer is substantially thinner. The resulting variations of the nanostructure influence the Seebeck coefficient and electrical conductivity and thus the power factor in a systematic manner. Our results shed light on a previously unreported correlation of the power factor with the nanostructural evolution of unstable telluride multilayers.

13.
Biomed Pharmacother ; 159: 114195, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36630847

RESUMEN

Multiple sclerosis (MS) is known as a chronic inflammatory disease (CID) that affects the central nervous system and leads to nerve demyelination. However, the exact cause of MS is unknown, but immune system regulation and inhibiting the function of inflammatory pathways may have a beneficial effect on controlling and improving the disease. Studies show that probiotics can alter the gut microbiome, thereby improving and affecting the immune system and inflammatory responses in patients with MS. The results show that probiotics have a good effect on the recovery of patients with MS in humans and animals. The present study investigated the effect of probiotics and possible therapeutic mechanisms of probiotics on immune cells and inflammatory cytokines. This review article showed that probiotics could improve immune cells and inflammatory cytokines in patients with MS and can play an effective role in disease management and control.


Asunto(s)
Esclerosis Múltiple , Probióticos , Animales , Humanos , Esclerosis Múltiple/tratamiento farmacológico , Sistema Nervioso Central , Inmunidad , Probióticos/farmacología , Probióticos/uso terapéutico , Citocinas
14.
Pathol Res Pract ; 241: 154280, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36580795

RESUMEN

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the cause of coronavirus disease 2019 (COVID-19) which has emerged as a global health crisis. Recently, more than 50 different types of potential COVID-19 vaccines have been developed to elicit a strong immune response against SARS-CoV-2. However, genetic mutations give rise to the new variants of SARS-CoV-2 which is highly associated with the reduced effectiveness of COVID-19 vaccines. There is still no efficient antiviral agent to specifically target the SARS-CoV-2 infection and treatment of COVID-19. Therefore, understanding the molecular mechanisms underlying the pathogenesis of SARS-CoV-2 may contribute to discovering a novel potential therapeutic approach to the management of COVID-19. Recently, extracellular vesicle (EV)-based therapeutic strategies have received great attention on account of their potential benefits in the administration of viral diseases. EVs are extracellular vesicles containing specific biomolecules which play an important role in cell-to-cell communications. It has been revealed that EVs are involved in the pathogenesis of different inflammatory diseases such as cancer and viral infections. EVs are released from virus-infected cells which could mediate the interaction of infected and uninfected host cells. Hence, these extracellular nanoparticles have been considered a novel approach for drug delivery to mediate the treatment of a wide range of diseases including, COVID-19. EVs are considered a cell-free therapeutic strategy that could ameliorate the cytokine storm and its complications in COVID-19 patients. Furthermore, EV-based cargo delivery such as immunomodulatory agents in combination with antiviral drugs may have therapeutic benefits in patients with SARS-CoV-2 infection. In this review, we will highlight the potential of EVs as a therapeutic candidate in the diagnosis and treatment of COVID-19. Also, we will discuss the future perspectives regarding the beneficial effects of Evs in the development of COVID-19 vaccines.


Asunto(s)
COVID-19 , Vesículas Extracelulares , Humanos , SARS-CoV-2 , Vacunas contra la COVID-19/uso terapéutico , Antivirales/farmacología , Antivirales/uso terapéutico
15.
Adv Mater ; 35(8): e2207364, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36308048

RESUMEN

3D superlattices made of colloidal quantum dots are a promising candidate for the next generation of optoelectronic devices as they are expected to exhibit a unique combination of tunable optical properties and coherent electrical transport through minibands. While most of the previous work was performed on 2D arrays, the control over the formation of these systems is lacking, where limited long-range order and energetical disorder have so far hindered the potential of these metamaterials, giving rise to disappointing transport properties. Here, it is reported that nanoscale-level controlled ordering of colloidal quantum dots in 3D and over large areas allows the achievement of outstanding transport properties. The measured electron mobilities are the highest ever reported for a self-assembled solid of fully quantum-confined objects. This ultimately demonstrates that optoelectronic metamaterials with highly tunable optical properties (in this case in the short-wavelength infrared spectral range) and charge mobilities approaching that of bulk semiconductor can be obtained. This finding paves the way toward a new generation of optoelectronic devices.

16.
Front Neurosci ; 17: 1333238, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38481829

RESUMEN

Introduction: Simulation of biological neural networks is a computationally intensive task due to the number of neurons, various communication pathways, and non-linear terms in the differential equations of the neuron. Method: This study proposes an original modification to optimize performance and power consumption in systems, simulating or implementing spiking neural networks. First, the proposed modified models were simulated for validation. Furthermore, digital hardware was designed, and both the original and proposed models were implemented on a Field-Programmable Gate Array (FPGA). Results and discussion: Moreover, the impact of the proposed modification on performance metrics was studied. The implementation results confirmed that the proposed models are considerably faster and require less energy to generate a spike compared with unmodified neurons.

17.
Nanoscale ; 15(1): 248-258, 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36472238

RESUMEN

The current lack of insight into nanoparticle-cell membrane interactions hampers smart design strategies and thereby the development of effective nanodrugs. Quantitative and methodical approaches utilizing cell membrane models offer an opportunity to unravel particle-membrane interactions in a detailed manner under well controlled conditions. Here we use total internal reflection microscopy for real-time studies of the non-specific interactions between nanoparticles and a model cell membrane at 50 ms temporal resolution over a time course of several minutes. Maintaining a simple lipid bilayer system across conditions, adsorption and desorption were quantified as a function of biomolecular corona, particle size and fluid flow. The presence of a biomolecular corona reduced both the particle adsorption rate onto the membrane and the duration of adhesion, compared to pristine particle conditions. Particle size, on the other hand, was only observed to affect the adsorption rate. The introduction of flow reduced the number of adsorption events, but increased the residence time. Lastly, altering the composition of the membrane itself resulted in a decreased number of adsorption events onto negatively charged bilayers compared to neutral bilayers. Overall, a model membrane system offers a facile platform for real-time imaging of individual adsorption-desorption processes, revealing complex adsorption kinetics, governed by particle surface energy, size dependent interaction forces, flow and membrane composition.


Asunto(s)
Nanopartículas , Corona de Proteínas , Adsorción , Membrana Celular , Membrana Dobles de Lípidos , Membranas
18.
Eur J Pharmacol ; 933: 175267, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36122756

RESUMEN

The ongoing COVID-19 pandemic is still a challenging problem in the case of infection treatment. The immunomodulatory effect of Nanocurcumin was investigated in the present study in an attempt to counterbalance the immune response and improve the patients' clinical symptoms. 60 confirmed COVID-19 patients and 60 healthy controls enrolled in the study. COVID-19 patients were divided into Nanocurcumin and placebo received groups. Due to the importance of the role of NK cells in this disease, the frequency, cytotoxicity, receptor gene expression of NK cells, and serum secretion levels of inflammatory cytokines IL-1ß, IL-6, TNF-α, as well as circulating C5a as a chemotactic factor an inflammatory mediator was evaluated by flow cytometry, real-time PCR and enzyme-linked immunosorbent assay in both experimental groups before and after the intervention. Given the role of measured factors in the progression and pathogenesis of COVID-19 disease, the results can help find appropriate treatments. The results of this study indicated that the Nanocurcumin could significantly increase the frequency and function of NK cells compared to the placebo-treated group. As an immunomodulatory agent, Nanocurcumin may be a helpful choice to improve NK cell function in COVID-19 patients and improve the clinical outcome of patients.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Estudios de Casos y Controles , Factores Quimiotácticos/farmacología , Citocinas/metabolismo , Humanos , Inmunidad , Mediadores de Inflamación/farmacología , Interleucina-6 , Células Asesinas Naturales , Pandemias , Factor de Necrosis Tumoral alfa/metabolismo
19.
Growth Factors ; 40(5-6): 163-174, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36026559

RESUMEN

Platelet-rich blood derivatives are being nowadays increasingly used in the treatment of tendon-related pathologies as a rich source of growth factors. We sought to ascertain if local application of platelet lysate (PL) to augment rotator cuff repair ameliorates patient outcomes compared to ketorolac tromethamine treated group. A total of forty patients, with clinical diagnosis of Rotator Cuff Tendinopathy were randomized to receive sub acromial injections of PL every week for a total of 3 injections and two injection of ketorolac tromethamine once every two weeks. Subjective assessments included VAS, SPADI and shoulder range of motion were assessed at baseline and at 1 and 6 months after injection. Taking both control and PL groups, it was vividly seen that the outcomes were identical at the initial state, as well as the short-term one; whereas, when considering the 6-month period, there is a seemingly remarkable superiority in PL group in all parameters.


Asunto(s)
Plasma Rico en Plaquetas , Lesiones del Manguito de los Rotadores , Tendinopatía , Humanos , Manguito de los Rotadores , Ketorolaco Trometamina/uso terapéutico , Lesiones del Manguito de los Rotadores/tratamiento farmacológico , Tendinopatía/tratamiento farmacológico , Tendones , Resultado del Tratamiento
20.
BMC Res Notes ; 15(1): 272, 2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35941659

RESUMEN

OBJECTIVES: Osteoporosis is a common skeletal disorder attributed to age and is defined as a systematic degradation of bone mass and the microarchitecture leading to bone fractures. Exosomes have been reported in almost all biological fluids and during the failure of bone remodeling. 20 ml of blood samples were obtained from osteoporotic and non-osteoporotic postmenopausal women. After the isolation of peripheral blood mononuclear cells (PBMCs), T cells were separated via the magnetic-activated cell sorting (MACS) technique. Exosomes were driven from T cells of non-osteoporotic and osteoporotic volunteers. Subsequently, normal osteoblasts were treated with obtained T cell exosomes to assess osteoblastic function and gene expression. RESULTS: Runx2, type I collagen, osteopontin, and osteocalcin expression decreased in osteoblasts treated by osteoporotic T cell exosomes. In contrast, an increased expression of the mentioned genes was observed following non-osteoporotic T cell exosome treatment. Additionally, osteoblast alkaline phosphatase (ALP) activity treated with non-osteoporotic T cell exosomes increased. However, this activity decreased in another group. Our data demonstrated that T cell exosomes obtained from osteoporotic and non-osteoporotic individuals could alter the osteoblastic function and gene expression by affecting the genes essential for bone remodeling.


Asunto(s)
Exosomas , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/metabolismo , Remodelación Ósea/genética , Diferenciación Celular , Células Cultivadas , Exosomas/genética , Exosomas/metabolismo , Femenino , Humanos , Leucocitos Mononucleares/metabolismo , Osteoblastos , Osteocalcina/genética , Osteocalcina/metabolismo , Osteocalcina/farmacología , Linfocitos T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...