Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Noise Health ; 24(115): 215-230, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36537446

RESUMEN

Background: Exposure to noise can increase biological stress reactions, which may increase adverse health effects, including metabolic disorders; however, the certainty in the association between exposure to noise and metabolic outcomes has not been widely explored. The objective of this review is to evaluate the evidence between noise exposures and metabolic effects. Materials and Methods: A systematic review of English and comparative studies available in PubMed, Cochrane Central, EMBASE, and CINAHL databases between January 1, 1980 and December 29, 2021 was performed. Risk of Bias of Nonrandomized Studies of Exposures was used to assess risk of bias of individual studies and certainty of the body of evidence for each outcome was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. Results: Fifty-six primary studies reporting on cortisol, cholesterol levels, waist circumference, glucose levels, and adrenaline and/or noradrenaline were identified. Although meta-analyses suggested that there may be an increase in waist circumference and adrenaline with increased noise exposure, the certainty in the evidence is very low. Overall, the certainty in the evidence of an effect of increased noise on all the outcomes were low to very low due to concerns with risk of bias, inconsistency across exposure sources, populations, and studies, and imprecision in the estimates of effects. Conclusions: The certainty of the evidence of increased noise on metabolic effects was low to very low, which likely reflects the inability to compare across the totality of the evidence for each outcome. The findings from this review may be used to inform policies involving noise reduction and mitigation strategies, and to direct further research in areas that currently have limited evidence available.


Asunto(s)
Epinefrina , Sesgo
2.
Noise Health ; 24(114): 107-129, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36124520

RESUMEN

Background: : Exposure to acute noise can cause an increase in biological stress reactions, which provides biological plausibility for a potential association between sustained noise exposure and stress-related health effects. However, the certainty in the evidence for an association between exposures to noise on short- and long-term biomarkers of stress has not been widely explored. The objective of this review was to evaluate the strength of evidence between noise exposure and changes in the biological parameters known to contribute to the development of stress-related adverse cardiovascular responses. Materials and Methods: This systematic review comprises English language comparative studies available in PubMed, Cochrane Central, EMBASE, and CINAHL databases from January 1, 1980 to December 29, 2021. Where possible, random-effects meta-analyses were used to examine the effect of noise exposure from various sources on stress-related cardiovascular biomarkers. The risk of bias of individual studies was assessed using the risk of bias of nonrandomized studies of exposures instrument. The certainty of the body of evidence for each outcome was assessed using the Grading of Recommendations Assessment, Development, and Evaluation approach. Results: : The search identified 133 primary studies reporting on blood pressure, hypertension, heart rate, cardiac arrhythmia, vascular resistance, and cardiac output. Meta-analyses of blood pressure, hypertension, and heart rate suggested there may be signals of increased risk in response to a higher noise threshold or incrementally higher levels of noise. Across all outcomes, the certainty of the evidence was very low due to concerns with the risk of bias, inconsistency across exposure sources, populations, and studies and imprecision in the estimates of effects. Conclusions: : This review identifies that exposure to higher levels of noise may increase the risk of some short- and long-term cardiovascular events; however, the certainty of the evidence was very low. This likely represents the inability to compare across the totality of the evidence for each outcome, underscoring the value of continued research in this area. Findings from this review may be used to inform policies of noise reduction or mitigation interventions.


Asunto(s)
Sistema Cardiovascular , Hipertensión , Presión Sanguínea , Frecuencia Cardíaca , Humanos , Ruido/efectos adversos
3.
Noise Health ; 24(114): 137-144, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36124522

RESUMEN

Background: Exposure to noise can increase biological stress reactions and that could increase the risk of stress-related prenatal effects, including adverse obstetric outcomes; however, the association between exposure to noise and adverse obstetric outcomes has not been extensively explored. The objective of this review was to evaluate the evidence between noise exposures and adverse obstetric outcomes, specifically preeclampsia, gestational diabetes, and gestational hypertension. Materials and Methods: A systematic review of English language, comparative studies available in PubMed, Cochrane Central, EMBASE, and CINAHL databases between January 1, 1980 and December 29, 2021 was performed. Risk of bias for individual studies was assessed using the Risk of Bias Instrument for Nonrandomized Studies of Exposures, and the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach was used to assess the certainty of the body of evidence for each outcome. Results: Six studies reporting on preeclampsia, gestational diabetes, and gestational hypertension were identified. Although some studies suggested there may be signals of increased responses to increased noise exposure for preeclampsia and gestational hypertension, the certainty in the evidence of an effect of increased noise on all the outcomes was very low due to concerns with risk of bias, inconsistency across studies, and imprecision in the effect estimates. Conclusions: While the certainty of the evidence for noise exposure and adverse obstetric outcomes was very low, the findings from this review may be useful for directing further research in this area, as there is currently limited evidence available. These findings may also be useful for informing guidelines and policies involving noise exposure situations or environments.


Asunto(s)
Diabetes Gestacional , Hipertensión Inducida en el Embarazo , Preeclampsia , Sesgo , Diabetes Gestacional/epidemiología , Diabetes Gestacional/etiología , Femenino , Humanos , Hipertensión Inducida en el Embarazo/epidemiología , Hipertensión Inducida en el Embarazo/etiología , Ruido/efectos adversos , Embarazo
4.
Chronobiol Int ; 39(5): 735-746, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35109725

RESUMEN

Night shift work has been linked to increased risk of cardiovascular disease (CVD); however, the underlying mechanisms remain unclear. A compelling yet understudied mechanism involves differential DNA methylation of circadian genes. To investigate the relevance of this mechanism, we conducted an exploratory cross-sectional study of 74 female hospital personnel (38 day workers, 36 night shift workers). Sociodemographic, lifestyle, and health characteristics as well as shift work status and history were determined through self-report. Fasting blood samples were collected to measure markers of cardiometabolic risk and DNA was extracted to measure DNA methylation of 1150 cytosine-guanine (CpG) sites across 22 circadian genes. Associations between methylation levels at individual CpG sites (ß-values) and markers of cardiometabolic risk were analyzed while considering effect modification by shift work status. The false discovery rate was applied to account for multiple comparisons (q ≤ 0.20). Two CpG sites [cg06758649 (CRY1) and cg06899802 (CSNK1A1)] were differentially associated with waist circumference and body mass index by shift work status, and eight CpG sites [cg26103512 (CSNK1D), cg03941313 (CSNK1E), cg18217763 (CSNK1E), cg16682686 (DEC1), cg12061096 (RORA), cg10133825 (RORA), cg19652148 (RORA), and cg22904654 (RORA)] were differentially associated with LDL cholesterol concentration by shift work status (all q ≤ 0.20). Our findings suggest that the relationship between DNA methylation of circadian genes and cardiometabolic risk differs by day and night shift worker status, which may contribute to mechanisms of increased risk of CVD observed among night shift workers.


Asunto(s)
Enfermedades Cardiovasculares , Metilación de ADN , Enfermedades Cardiovasculares/genética , Ritmo Circadiano/genética , Estudios Transversales , ADN , Femenino , Hospitales , Humanos , Personal de Hospital , Tolerancia al Trabajo Programado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...