Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 809, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39198743

RESUMEN

Climate change has become a concern, emphasizing the need for the development of crops tolerant to drought. Therefore, this study is designed to explore the physiological characteristics of quinoa that enable it to thrive under drought and other extreme stress conditions by investigating the combined effects of irrigation water levels (100%, 75%, and 50% of quinoa's water requirements, WR as I1, I2 and I3) and different planting methods (basin, on-ridge, and in-furrow as P1, P2 and P3) on quinoa's physiological traits and gas exchange. Results showed that quinoa's yield is lowest with on-ridge planting and highest in the in-furrow planting method. Notably, the seed protein concentrations in I2 and I3 did not significantly differ but they were 25% higher than those obtained in I1, which highlighted the possibility of using a more effective irrigation method without compromising the seed quality. On the other hand, protein yield (PY) was lowest in P2 (mean of I1 and I2 as 257 kg ha-1) and highest in P3 (mean of I1 and I2 as 394 kg ha-1, 53% higher). Interestingly, PY values were not significantly different in I1 and I2, but they were lower significantly in I3 by 28%, 27% and 20% in P1, P2, and P3, respectively. Essential plant characteristics including plant height, stem diameter, and panicle number were 6.1-16.7%, 6.4-24.5%, and 18.4-36.5% lower, respectively, in I2 and I3 than those in I1. The highest Leaf Area Index (LAI) value (5.34) was recorded in the in-furrow planting and I1, while the lowest value was observed in the on-ridge planting method and I3 (3.47). In I3, leaf temperature increased by an average of 2.5-3 oC, particularly during the anthesis stage. The results also showed that at a similar leaf water potential (LWP) higher yield and dry matter were obtained in the in-furrow planting compared to those obtained in the basin and on-ridge planting methods. The highest stomatal conductance (gs) value was observed within the in-furrow planting method and full irrigation (I1P3), while the lowest values were obtained in the on-ridge and 50%WR (I3P2). Finally, photosynthesis rate (An) reduction with diminishing LWP was mild, providing insights into quinoa's adaptability to drought. In conclusion, considering the thorough evaluation of all the measured parameters, the study suggests using the in-furrow planting method with a 75%WR as the best approach for growing quinoa in arid and semi-arid regions to enhance production and resource efficiency.


Asunto(s)
Riego Agrícola , Chenopodium quinoa , Chenopodium quinoa/fisiología , Chenopodium quinoa/crecimiento & desarrollo , Chenopodium quinoa/metabolismo , Riego Agrícola/métodos , Grano Comestible/crecimiento & desarrollo , Grano Comestible/fisiología , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/fisiología , Sequías , Semillas/crecimiento & desarrollo , Semillas/fisiología , Producción de Cultivos/métodos , Agua/metabolismo
2.
Sci Rep ; 13(1): 5768, 2023 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37031260

RESUMEN

The SIRMOD and WinSRFR models were used to model and assess the irrigation performance under continuous and surge irrigation strategies with two furrow lengths of 70 m and 90 m and stream sizes of 0.4 l/s and 0.6 l/s for each length. According to the normalized root mean squared error (NRMSE) and the relative error (RE), WinSRFR had, on average, excellent accuracy in the continuous and surge irrigation for simulating advance-recession times (NRMSE: 6.15 and 4.24% for advance time, and 2.20 and 5.20% for recession time), infiltrated water depth (NRMSE: 3.37 and 6.38%), and runoff volume (RE: 6.93 and 2.57%), respectively. SIRMOD had also, on average, excellent simulation in the continuous and surge irrigation for advance-recession times (NRMSE: 3.34 and 2.45% for advance time, and 2.28 and 6.41% for recession time), infiltrated water depth (NRMSE: 2.98 and 5.27%), and runoff volume (RE: 5.31 and 17.49%), respectively. The average of irrigation application efficiency (AE), distribution uniformity (DU), deep percolation (DP), and tail-water ratio (TWR) were 61.50, 90.25, 11.75, and 26.75% in continuous irrigation, and 72.03, 94.09, 8.39, and 19.57% in surge irrigation, respectively, which shows that surge irrigation increased AE (irrigation management performance) and DU (irrigation method performance) and reduced DP and TWR compared to continuous irrigation. Moreover, longer furrow lengths increased AE and DP under both irrigation methods, while it decreased TWR and DU. However, increasing the stream size decreased AE and DP and increased TWR under both continuous and surge irrigations. The higher stream size improved DU in continuous irrigation but reduced DU in surge irrigation. The results confirmed that both SIRMOD and WinSRFR are reliable analytical tools to evaluate furrow irrigation strategies for improving irrigation management. In conclusion, this study showed that surface irrigation models could be employed in practice by irrigation engineers and practitioners to design and define the optimized furrow length and stream size in arid and semi-arid areas where efficient and high performance irrigation strategies are required to save water and reduce water loss.

3.
Front Plant Sci ; 13: 1067498, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36684760

RESUMEN

Plant root traits play a crucial role in resource acquisition and crop performance when soil nutrient availability is low. However, the respective trait responses are complex, particularly at the field scale, and poorly understood due to difficulties in root phenotyping monitoring, inaccurate sampling, and environmental conditions. Here, we conducted a systematic review and meta-analysis of 50 field studies to identify the effects of nitrogen (N), phosphorous (P), or potassium (K) deficiencies on the root systems of common crops. Root length and biomass were generally reduced, while root length per shoot biomass was enhanced under N and P deficiency. Root length decreased by 9% under N deficiency and by 14% under P deficiency, while root biomass was reduced by 7% in N-deficient and by 25% in P-deficient soils. Root length per shoot biomass increased by 33% in N deficient and 51% in P deficient soils. The root-to-shoot ratio was often enhanced (44%) under N-poor conditions, but no consistent response of the root-to-shoot ratio to P-deficiency was found. Only a few K-deficiency studies suited our approach and, in those cases, no differences in morphological traits were reported. We encountered the following drawbacks when performing this analysis: limited number of root traits investigated at field scale, differences in the timing and severity of nutrient deficiencies, missing data (e.g., soil nutrient status and time of stress), and the impact of other conditions in the field. Nevertheless, our analysis indicates that, in general, nutrient deficiencies increased the root-length-to-shoot-biomass ratios of crops, with impacts decreasing in the order deficient P > deficient N > deficient K. Our review resolved inconsistencies that were often found in the individual field experiments, and led to a better understanding of the physiological mechanisms underlying root plasticity in fields with low nutrient availability.

4.
J Environ Manage ; 276: 111278, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32906072

RESUMEN

Accurate estimation of irrigation requirement is necessary for conserving the quantity and quality of water resources. Generally, irrigation requirement is estimated by calculating reference evapotranspiration (ETo). In this study, radiation-based, temperature-based, and combination-based ETo models were assessed based on the monthly averaged weather data between 1987 and 2017. The combination-based Standardized ASCE Penman-Monteith (ASCE PM Std.) was selected as the benchmark model due to its global acceptance and accuracy. Results showed that the combination-based Penman models were ranked as the top models among the other ETo models. However, if some weather variables are missing, the Priestly-Taylor model followed by the Makkink and Turc models (all as radiation-based models) were the next recommended ETo models.The performance of the temperature-based models and some other radiation-based models (FAO24 Radiation and Jensen-Haise) were not satisfactory. Trend and change point detection analyses on air temperature, relative humidity, and wind speed showed that the study area is getting warmer and drier, which indicate that ETo would increase in the study area. Therefore, it is recommended to use the ETo models that consider the majority of the weather variables that influence ETo. The results of this study could serve as a reliable guide for selection of appropriate ETo models to protect water resources in arid and semi-arid areas. .


Asunto(s)
Tiempo (Meteorología) , Viento , Temperatura
5.
Environ Monit Assess ; 138(1-3): 357-68, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17525831

RESUMEN

Groundwater and water resources management play a key role in conserving the sustainable conditions in arid and semi-arid regions. Applying some techniques that can reveal the critical and hot conditions of water resources seem necessary. In this study, kriging and cokriging methods were evaluated for mapping the groundwater depth across a plain in which has experienced different climatic conditions (dry, wet, and normal) and consequently high variations in groundwater depth in a 12 year led in maximum, minimum, and mean depths. During this period groundwater depth has considerable fluctuations. Results obtained from geostatistical analysis showed that groundwater depth varies spatially in different climatic conditions. Furthermore, the calculated RMSE showed that cokriging approach was more accurate than kriging in mapping the groundwater depth though there was not a distinct difference. As a whole, kriging underestimated the real groundwater depth for dry, wet, and normal conditions by 5.5, 2.2, and 5.3%, while cokriging underestimations were 3.3, 2, and 2.2%, respectively; which showed the unbiasedness in estimations. Results implied that in the study area farming and cultivation in dry conditions needs more attention due to higher variability in groundwater depth in short distances compared to the other climate conditions. It is believed that geostatistical approaches are reliable tools for water resources managers and water authorities to allocate groundwater resources in different environmental conditions.


Asunto(s)
Interpretación Estadística de Datos , Abastecimiento de Agua/estadística & datos numéricos , Conservación de los Recursos Naturales , Irán
6.
Environ Monit Assess ; 129(1-3): 277-94, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17180432

RESUMEN

Groundwater and water resources management plays a key role in conserving the sustainable conditions in arid and semi-arid regions. Applying management tools which can reveal the critical and hot conditions seems necessary due to some limitations such as labor and funding. In this study, spatial and temporal analysis of monthly groundwater level fluctuations of 39 piezometric wells monitored during 12 years was carried out. Geostatistics which has been introduced as a management and decision tool by many researchers has been applied to reveal the spatial and temporal structure of groundwater level fluctuation. Results showed that a strong spatial and temporal structure existed for groundwater level fluctuations due to very low nugget effects. Spatial analysis showed a strong structure of groundwater level drop across the study area and temporal analysis showed that groundwater level fluctuations have temporal structure. On average, the range of variograms for spatial and temporal analysis was about 9.7 km and 7.2 months, respectively. Ordinary and universal kriging methods with cross-validation were applied to assess the accuracy of the chosen variograms in estimation of the groundwater level drop and groundwater level fluctuations for spatial and temporal scales, respectively. Results of ordinary and universal krigings revealed that groundwater level drop and groundwater level fluctuations were underestimated by 3% and 6% for spatial and temporal analysis, respectively, which are very low and acceptable errors and support the unbiasedness hypothesis of kriging. Although, our results demonstrated that spatial structure was a little bit stronger than temporal structure, however, estimation of groundwater level drop and groundwater level fluctuations could be performed with low uncertainty in both space and time scales. Moreover, the results showed that kriging is a beneficial and capable tool for detecting those critical regions where need more attentions for sustainable use of groundwater. Regions in which were detected as critical areas need to be much more managed for using the current water resources efficiently. Conducting water harvesting systems especially in critical and hot areas in order to recharge the groundwater, and altering the current cropping pattern to another one that need less water requirement and applying modern irrigation techniques are highly recommended; otherwise, it is most likely that in a few years no more crop would be cultivated.


Asunto(s)
Geografía , Suelo , Abastecimiento de Agua/análisis , Geografía/estadística & datos numéricos , Irán
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA