Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
SAGE Open Med ; 9: 2050312121991246, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33614035

RESUMEN

INTRODUCTION: The COVID-19 is a pandemic caused by SARS-CoV-2 which has infected over 74 million people, killing more than 1,600,000 million people around the world as of 17th December 2020. Accumulation of free radicals coupled by weakened antioxidant system leads to oxidative stress, which will further worsen respiratory diseases, COVID-19 inclusive. This study aimed to examine the levels of some antioxidants and oxidative stress markers in COVID-19 patients. METHODS: This was a cross-sectional comparative study in which 50 COVID-19 symptomatic patients who were on admission at the COVID-19 isolation center in Jigawa, Northwestern Nigeria, were recruited. Twenty one (21) apparently healthy individuals were included as controls. Levels of antioxidant trace elements (Se, Zn, Mg, Cu and Cr), 8-isoprostaglandin F2 alpha and malondialdehyde in the plasma and erythrocytes activity of glutathione, glutathione peroxidase, superoxide dismutase and catalase were determined. RESULTS: The plasma concentrations of vitamins A, C and E were significantly lower (p < 0.001) in COVID-19 patients than controls. Activities of glutathione, glutathione peroxidase, catalase and superoxide dismutase were lower in COVID-19 subjects than controls (p < 0.001). The concentrations of Se, Zn, Mg and Cu were significantly lower (p < 0.001; p = 0.039; p < 0.001; and p < 0.001), respectively, in COVID-19 patients than controls, while chromium showed no significant difference (p = 0.605). Oxidative stress marker, 8-isoprostaglandin F2 alpha, was significantly higher (p = 0.049), while malondialdehyde was lower (p < 0.001) in COVID-19 patients than controls. CONCLUSION: In conclusion, COVID-19 patients are prone to depleted levels of antioxidant substances due to their increase utilization in counterbalancing the negative effect of free radicals. Furthermore, COVID-19 infection with other comorbidities, such as malaria, hypertension and diabetes, are at higher risk of developing oxidative stress.

2.
Pan Afr Med J ; 37: 78, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33244341

RESUMEN

INTRODUCTION: the most recently discovered severe acute respiratory syndrome Coronavirus 2 (SARS-COV-2) that causes COVID-19, subjected the entire world in turmoil health-wise and economically. With higher burden of malaria in Nigeria and other sub-Saharan African countries coupled with fragile healthcare system and delivery, these may pose a threat in the diagnosis and management of COVID-19 patients co-infected with malaria. Free radicals have been implicated in the progression and pathogenesis of malaria and COVID-19 through Fenton's reaction and cytokine storm respectively. METHODS: the current research comprises of seventy-four (74) participants; 20 apparently healthy controls and 54 COVID-19 patients (34 among which were co-infected with malaria). Serum levels of 8-iso PGF2α and Alphatocopherol were determined among the study participants using ELISA technique and colorimetric assay, respectively. RESULTS: results revealed statistically significant elevation of 8-iso PGF2α in COVID-19 patients co-infected with malaria compared to COVID-19 patients only, and this may be due to increase production of free radicals. Furthermore, a significant decrease of Alphatocopherol was observed in COVID-19 co-infected with malaria compared to COVID-19 patients due to increase utilization of antioxidants in counterbalancing the negative effect of free radicals generated. CONCLUSION: conclusively, SARS-COV-2 patients co-infected with malaria might be predisposed to oxidative stress and low Alphatocopherol. The increase in oxidative stress is proportional to malaria parasite density and inversely related to Alphatocopherol levels. This implies that oxidative stress is notably higher and such patients may have a severer form of the COVID-19. Increased 8-iso-PGF2α in co-infection and decreased alphatocopherol levels can reflect the severity and adverse outcomes compared to COVID-19 naïve because of their tremendous involvement in the pathogenesis and progression of diseases.


Asunto(s)
COVID-19/sangre , Coinfección/sangre , Dinoprost/análogos & derivados , Malaria/sangre , SARS-CoV-2 , alfa-Tocoferol/sangre , Biomarcadores/sangre , Prueba de COVID-19/métodos , Estudios de Casos y Controles , Coinfección/diagnóstico , Colorimetría/métodos , Estudios Transversales , Dinoprost/sangre , Femenino , Humanos , Malaria/diagnóstico , Malaria/parasitología , Masculino , Nigeria , Estrés Oxidativo , Pandemias , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...