Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Chem ; 12: 1342784, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38435668

RESUMEN

In this study, choline chloride/urea was used as a green deep eutectic solvent in the three-component reaction of hydrazine/phenylhydrazine, malononitrile, and aromatic aldehydes for synthesizing pyrazole derivatives, and in the four-component reaction of methyl/ethyl acetoacetate, hydrazine/phenylhydrazine, malononitrile, and aromatic aldehydes for synthesizing pyrano[2,3-c]pyrazole derivatives. Elemental analysis, 1H, and 13C NMR spectroscopy were used to confirm the structure of the synthesized pyrazole and pyrano[2,3-c] pyrazole derivatives. The antimicrobial effects of the synthesized pyrazole and pyrano[2,3-c] pyrazole derivatives were investigated. In antimicrobial tests, instructions from clinical and laboratory standards institutes were used. Antimicrobial study was done on pathogenic gram-positive and gram-negative species, and specialized aquatic strains and fungal species. Using choline chloride/urea, novel pyrazole derivatives and pyrano[2,3-c]pyrazole derivatives were synthesized, and other derivatives were synthesized with higher efficiency in less time than some previously reported methods. MIC (minimum inhibitory concentration) and MBC (minimum bactericidal concentration) obtained for derivatives were higher than some antibiotic drugs. Synthesis and reports of new derivatives of pyrazole and pyrano[2,3-c]pyrazole, and investigation and reports of their antimicrobial properties on gram-positive, gram-negative, and specialized aquatic and fungal species are among the novel and important findings of this study.

2.
Pathol Res Pract ; 254: 155119, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38309019

RESUMEN

According to estimates, cancer will be the leading cause of death globally in 2022, accounting for 9.6 million deaths. At present, the three main therapeutic modalities utilized to treat cancer are radiation therapy, chemotherapy, and surgery. However, during treatment, tumor cells resistant to chemotherapy may arise. Drug resistance remains a major oppose since it often leads to therapeutic failure. Furthermore, the term "acquired drug resistance" describes the situation where tumor cells already display drug resistance before undergoing chemotherapy. However, little is still known about the basic mechanisms underlying chemotherapy-induced drug resistance. The development of new technologies and bioinformatics has led to the discovery of additional genes associated with drug resistance. Long noncoding RNA plasmacytoma variant translocation 1 (PVT1) has been linked to an increased risk of cancer, according to a growing body of research. Apart from biological functions associated with cell division, development, pluripotency, and cell cycle, lncRNA PVT1 contributes significantly to the regulation of various aspects of genome function, such as transcription, splicing, and epigenetics. The article will address the mechanism by which lncRNA PVT1 influences drug resistance in cancer cells.


Asunto(s)
Resistencia a Antineoplásicos , Neoplasias , ARN Largo no Codificante , Humanos , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica/genética , MicroARNs/genética , Neoplasias/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
3.
Pathol Res Pract ; 254: 155084, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38244434

RESUMEN

This article undertakes a comprehensive investigation of ovarian cancer, examining the complex nature of this challenging disease. The main focus is on understanding the role of long non-coding RNAs (lncRNAs) in the context of ovarian cancer (OC), and their regulatory functions in disease progression. Through extensive research, the article identifies specific lncRNAs that play significant roles in the intricate molecular processes of OC. Furthermore, the study examines the signaling pathways involved in the development of OC, providing a detailed comprehension of the underlying molecular mechanisms. By connecting lncRNA dynamics with signaling pathways, this exploration not only advances our understanding of ovarian cancer but also reveals potential targets for therapeutic interventions. The findings open up opportunities for targeted treatments, highlighting the importance of personalized approaches in addressing this complex disease and driving progress in ovarian cancer research and treatment strategies.


Asunto(s)
Neoplasias Ováricas , ARN Largo no Codificante , Humanos , Femenino , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias Ováricas/genética , Transducción de Señal/genética , Progresión de la Enfermedad
4.
Children (Basel) ; 10(6)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37371171

RESUMEN

This study aimed to analyze the fatty acid content in human milk and to find its relationship with the growth velocity of preterm infants. Mature milk samples from 15 mothers of preterm infants were collected from three different hospitals, followed by lipid extraction, fatty acid methylation, and finally gas chromatography analysis to determine the fatty acids composition. The average total lipid content was 3.61 ± 1.57 g/100 mL with the following classes of fatty acids: saturated fatty acids 43.54 ± 11.16%, unsaturated fatty acids 52.22 ± 10.89%, in which monounsaturated fatty acids were 36.52 ± 13.90%, and polyunsaturated fatty acids were 15.70 ± 7.10%. Polyunsaturated fatty acid sub-class n-6 was 15.23 ± 8.23% and n-3 was 0.46 ± 0.18%. Oleic acid, palmitic acid, and linoleic acid were the most abundant fatty acids. The n-6/n-3 ratio was 32.83:1. EPA and DHA fatty acids were not detected. As gestational age and birth weight increase, C20:2n6 content increases. The growth velocity increases with the decrement in C16 and increment in C20:2n6. The lipid profile of preterm human milk was found to be low in some essential fatty acids, which may affect the quality of preterm infants' nutrition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...