Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(14): 16187-16195, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38617626

RESUMEN

Methylene blue (MB) is a toxic contaminant present in wastewater. Here, we prepared various composites of graphene oxide (GO) with graphitic carbon nitride (g-C3N4) and zinc oxide (ZnO) for the degradation of MB. In comparison to ZnO (22.9%) and g-C3N4/ZnO (76.0%), the ternary composites of GO/g-C3N4/ZnO showed 90% photocatalytic degradation of MB under a light source after 60 min. The experimental setup and parameters were varied to examine the process and effectiveness of MB degradation. Based on the results of the experiments, a proposed photocatalytic degradation process that explains the roles of GO, ZnO, and g-C3N4 in improving the photocatalytic efficacy of newly prepared GO/g-C3N4/ZnO was explored. Notably, the g-C3N4/ZnO nanocomposite's surface was uniformly covered with ZnO nanorods. The images of the samples clearly demonstrated the porous nature of GO/g-C3N4/ZnO photocatalysts, and even after being mixed with GO, the g-C3N4/ZnO composite retained the layered structure of the original material. The catalyst's porous structure plausibly enhanced the degradation of the contaminants. The high-clarity production of g-C3N4 and the effectiveness of the synthesis protocol were later validated by the absence of any trace contamination in the energy-dispersive X-ray spectroscopy (EDS) results. The composition of the ZnO elements and their spectra were revealed by the EDS results of the prepared ZnO nanorods, g-C3N4/ZnO, and GO/g-C3N4/ZnO. The outcomes indicated that the nanocomposites were highly uncontaminated and contained all necessary elements to facilitate the transformative process. The results of this experiment could be applied at a large scale, thus proving the effectiveness of photocatalysts for the removal of dyes.

2.
Environ Sci Pollut Res Int ; 31(6): 8917-8929, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38182953

RESUMEN

Over-accumulating salts in soil are hazardous materials that interfere with the biochemical pathways in growing plants drastically affecting their physiological attributes, growth, and productivity. Soil salinization poses severe threats to highly-demanded and important crops directly challenging food security and sustainable productivity. Recently, there has been a great demand to exploit natural sources for the development of nontoxic nanoformulations of growth enhancers and stress emulators. The chitosan (CS) has growth-stimulating properties and widespread use as nanocarriers, while curcumin (CUR) has a well-established high ROS scavenging potential. Herein, we use CS and CUR for the preparation of CSNPs encapsulating CUR as an ecofriendly nanopriming agent. The hydroprimed, nanoprimed (0.02 and 0.04%), and unprimed (control) wheat seeds were germinated under salt stress (150 mM NaCl) and normal conditions. The seedlings established from the aforementioned seeds were employed for germination studies and biochemical analyses. Priming imprints mitigated the ionic toxicity by upregulating the machinery of antioxidants (CAT, POD, APX, and SOD), photosynthetic pigments (Chl a, Chl b, total Chl, and lycopene), tannins, flavonoids, and protein contents in wheat seedlings under salt stress. It controlled ROS production and avoided structural injuries, thus reducing MDA contents and regulating osmoregulation. The nanopriming-induced readjustments in biochemical attributes counteracted the ionic toxicity and positively influenced the growth parameters including final germination, vigor, and germination index. It also reduced the mean germination time, significantly validating the growth-stimulating and stress-emulating role of the prepared nanosystem. Hence, the nanopriming conferred tolerance against salt stress during germination and seedling development, ensuring sustainable growth.


Asunto(s)
Quitosano , Curcumina , Nanopartículas , Plantones/metabolismo , Triticum , Quitosano/metabolismo , Curcumina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Germinación , Suelo , Semillas
3.
Nanotechnology ; 34(26)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-36972572

RESUMEN

Recently, there has been considerable interest in a new family of transition metal carbides, carbonitrides, and nitrides referred to as MXenes (Ti3C2Tx) due to the variety of their elemental compositions and surface terminations that exhibit many fascinating physical and chemical properties. As a result of their easy formability, MXenes may be combined with other materials, such as polymers, oxides, and carbon nanotubes, which can be used to tune their properties for various applications. As is widely known, MXenes and MXene-based composites have gained considerable prominence as electrode materials in the energy storage field. In addition to their high conductivity, reducibility, and biocompatibility, they have also demonstrated outstanding potential for applications related to the environment, including electro/photocatalytic water splitting, photocatalytic carbon dioxide reduction, water purification, and sensors. This review discusses MXene-based composite used in anode materials, while the electrochemical performance of MXene-based anodes for Li-based batteries (LiBs) is discussed in addition to key findings, operating processes, and factors influencing electrochemical performance.

4.
BMC Plant Biol ; 22(1): 540, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36414951

RESUMEN

BACKGROUND: Around the globe, salinity is one of the serious environmental stresses which negatively affect rapid seed germination, uniform seedling establishment and plant developments restricting sustainable agricultural productivity. In recent years, the concepts of sustainable agriculture and cleaner production strategy have emphasized the introduction of greener agrochemicals using biocompatible and natural sources to maximize crop yield with minimum ecotoxicological effects. Over the last decade, the emergence of nanotechnology as a forefront of interdisciplinary science has introduced nanomaterials as fast-acting plant growth-promoting agents. RESULTS: Herein, we report the preparation of nanocomposite using chitosan and green tea (CS-GTE NC) as an ecofriendly nanopriming agent to elicit salt stress tolerance through priming imprints. The CS-GTE NC-primed (0.02, 0.04 and 0.06%), hydroprimed and non-primed (control) wheat seeds were germinated under normal and salt stress (150 mM NaCl) conditions. The seedlings developed from aforesaid seeds were used for physiological, biochemical and germination studies. The priming treatments increased protein contents (10-12%), photosynthetic pigments (Chl a (4-6%), Chl b (34-36%), Total Chl (7-14%) and upregulated the machinery of antioxidants (CAT (26-42%), POD (22-43%)) in wheat seedlings under stress conditions. It also reduced MDA contents (65-75%) and regulated ROS production resulting in improved membrane stability. The priming-mediated alterations in biochemical attributes resulted in improved final germination (20-22%), vigor (4-11%) and germination index (6-13%) under both conditions. It reduced mean germination time significantly, establishing the stress-insulating role of the nanocomposite. The improvement of germination parameters validated the stimulation of priming memory in composite-treated seeds. CONCLUSION: Pre-treatment of seeds with nanocomposite enables them to counter salinity at the seedling development stage by means of priming memory warranting sustainable plant growth and high crop productivity.


Asunto(s)
Plantones , Triticum , Plantones/metabolismo , Germinación , Semillas , Estrés Salino
5.
BMC Chem ; 16(1): 23, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35365183

RESUMEN

In this study Cu-chitosan nanoparticles (Cu-CNP) have been employed as eco-friendly and safer priming agents to induce salt and PEG-induced hyperosmotic stress tolerance in wheat seedlings. Seed priming is a facile on-farm stress management technique that requires a little amount of priming agent and minimizes the eco-toxicological effects on soil fertility. The wheat seeds were primed with 0.12% and 0.16% Cu-CNP for eight hours and were allowed to germinate under normal, PEG-induced hyperosmotic stress (15% PEG-6000  - 3.0 Mpa) and salt stress (150 mM). For comparison, non-primed and hydro-primed seeds were also allowed to germinate as control under the same conditions. The biochemical analyses suggested the priming treatments enhanced the POD activity under salt stress but it was decreased under PEG-induced hyperosmotic stress. Priming with 0.12% Cu-CNP induced a significant increase in CAT while the opposite effect was observed in 0.16% treated seedling under stress and non-stress conditions. Both priming treatments did not allow the over-expression of SOD under both stress conditions. The total phenolic contents were also decreased significantly under all conditions. Except for priming with 0.16% Cu-CNP under PEG-induced hyperosmotic stress, a suppression in MDA was observed under both stress conditions. Surprisingly, the Cu-CNP priming induced a significant increase in ß-carotenoids, total carotenoids, chlorophyll a, b and total chlorophyll under normal and stress conditions. In conclusion, the controlled expression of enzymatic antioxidants, low contents of non-enzymatic antioxidants and suppression of MDA mirror the stress mitigating role of Cu-CNP against PEG-induced hyperosmotic stress and salinity. The stress-insulating potential has also been reinforced by the enhanced production of plant and photosynthetic pigments. All these priming-induced biochemical changes produced positive effects on growth and germinating parameters in wheat seedlings under PEG-induced hyperosmotic stress as well as salinity.

6.
Int J Biol Macromol ; 168: 310-321, 2021 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-33309670

RESUMEN

This study employed mesophilic Bacillus subtilis RTS strain isolated from soil with high xylanolytic activity. A 642 bp (xyn) xylanase gene (GenBank accession number MT677937) was extracted from Bacillus subtilis RTS and cloned in Escherichia coli BL21 cells using pET21c expression system. The cloned gene belongs to glycoside hydrolase family 11 with protein size of approximately 23 KDa. The recombinant xylanase showed optimal enzyme activity at 60 °C and at pH 6.5. Thermostability of recombinant xylanase was observed between the temperature range of 30-60 °C. Xylanase also remained stable in different concentration of various organic solvents (ethanol, butanol). This might be due to the formation of protein/organic solvent interface which prevents stripping of essential water molecules from enzyme, thus enzyme conformation and activity remained stable. Finally, the molecular docking analysis through AutoDock Vina showed the involvement of Tyr 108, Arg140 and Pro144 in protein-ligand interaction, which stabilizes this complex. The observed stability of recombinant xylanase at higher temperature and in the presence of organic solvent (ethanol, butanol) suggested possible application of this enzyme in biofuel and other industrial applications.


Asunto(s)
Bacillus subtilis/enzimología , Endo-1,4-beta Xilanasas/química , Endo-1,4-beta Xilanasas/aislamiento & purificación , Bacillus/enzimología , Bacillus subtilis/genética , Clonación Molecular/métodos , Endo-1,4-beta Xilanasas/genética , Estabilidad de Enzimas , Escherichia coli/genética , Concentración de Iones de Hidrógeno , Simulación del Acoplamiento Molecular , Proteínas Recombinantes/química , Temperatura
7.
J Photochem Photobiol B ; 213: 112070, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33142213

RESUMEN

Owing to photocatalytic and antibacterial properties, bismuth based oxides has drawn much attention in recent past. However, non-recyclability of these oxides has restricted their practical applications. In present work, a novel nanostructured composite monoclinic bismuth vanadate@ activated carbon fibers (BiVO4@ACF) photocatalyst was efficaciously synthesized using a solvothermal method and characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and Bruner-Emmett-Teller (BET). The specific surface area, phase composition, microstructure, binding and photocatalytic activity of BiVO4@ACF pose great dependence on solvent nature and chelating agents utilized for synthesis. The photocatalytic and antibacterial potential of this composite was evaluated and optimized by using a model pollutant, Reactive Rhodamine Blue (RhB) and pathogenic microbes (Escherichia coli and Staphylococcus aureus). The composite possesses enhanced photocatalytic and antibacterial activity and was reutilized for three rounds of respective reaction without any loss of activity and structure as evident from SEM and XRD results. The photocatalytic mechanism of photodegradation of dye and bactericidal properties of samples under visible light irradiation was determined by scavenger and photoluminescence (PL) spectroscopy. The enhanced photocatalytic and antibacterial activity, chemical stability and most importantly good recyclability of BiVO4@ACFs highlight the potential application of this composite in water purification and other biological applications.


Asunto(s)
Antibacterianos/química , Bismuto/química , Fibra de Carbono/química , Nanoestructuras/química , Vanadatos/química , Contaminación Química del Agua/prevención & control , Catálisis , Escherichia coli/metabolismo , Escherichia coli/efectos de la radiación , Radicales Libres/química , Luz , Fotólisis , Rodaminas/química , Espectrometría de Fluorescencia , Staphylococcus aureus/metabolismo , Staphylococcus aureus/efectos de la radiación , Difracción de Rayos X
8.
RSC Adv ; 10(6): 3192-3202, 2020 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-35497764

RESUMEN

For economical water splitting and degradation of toxic organic dyes, the development of inexpensive, efficient, and stable photocatalysts capable of harvesting visible light is essential. In this study, we designed a model system by grafting graphitic carbon nitride (g-C3N4) (g-CN) nanosheets on the surface of 2D monoclinic bismuth vanadate (m-BiVO4) nanoplates by a simple hydrothermal method. This as-synthesized photocatalyst has well-dispersed g-CN nanosheets on the surface of the nanoplates of m-BiVO4, thus forming a heterojunction with a high specific surface area. The degradation rate for bromophenol blue (BPB) shown by BiVO4/g-CN is 96% and that for methylene blue (MB) is 98% within 1 h and 25 min, respectively. The 2D BiVO4/g-CN heterostructure system also shows outstanding durability and retains up to ∼95% degradation efficiency for the MB dye even after eight consecutive cycles; the degradation efficiency for BPB does not change too much after eight consecutive cycles as well. The enhanced photocatalytic activities of BiVO4/g-CN are attributed to the larger surface area, larger number of surface active sites, fast charge transfer and improved separation of photogenerated charge carriers. We proposed a mechanism for the improved photocatalytic performance of the Z-scheme photocatalytic system. The present work gives a good example for the development of a novel Z-scheme heterojunction with good stability and high photocatalytic activity for toxic organic dye degradation and water splitting applications.

9.
RSC Adv ; 9(47): 27432-27438, 2019 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-35529239

RESUMEN

A single-step hydrothermal route for synthesizing molybdenum doped zinc oxide nanoflakes was employed to accomplish superior electrochemical characteristics, such as a specific capacitance of 2296 F g-1 at current density of 1 A g-1 and negligible loss in specific capacitance of 0.01025 F g-1 after each charge-discharge cycle (up to 8000 cycles). An assembled asymmetric supercapacitor (Mo:ZnO@NF//AC@NF) also exhibited a maximum energy density and power density of 39.06 W h/kg and 7425 W kg-1, respectively. Furthermore, it demonstrated a specific capacitance of 123 F g-1 at 1 A g-1 and retained about 75.6% of its initial capacitance after 8000 cycles. These superior electrochemical characteristics indicate the potential of this supercapacitor for next-generation energy storage devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...