Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Metab ; 6(9): 1819-1836, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39256590

RESUMEN

Abnormalities in the structure and metabolic function of abdominal subcutaneous adipose tissue (aSAT) underlie many obesity-related health complications. Endurance exercise improves cardiometabolic health in adults with overweight or obesity, but the effects of endurance training on aSAT are unclear. We included male and female participants who were regular exercisers with overweight or obesity who exercised for >2 years, and cross-sectionally compared them with well-matched non-exercisers with overweight or obesity. Here we show aSAT from exercisers has a higher capillary density, lower Col6a abundance and fewer macrophages compared with non-exercisers. This is accompanied by a greater abundance of angiogenic, ribosomal, mitochondrial and lipogenic proteins. The abundance of phosphoproteins involved in protein translation, lipogenesis and direct regulation of transcripts is also greater in aSAT collected from exercisers. Exploratory ex vivo experiments demonstrate greater angiogenic capacity and higher lipid-storage capacity in samples cultured from aSAT collected from exercisers versus non-exercisers. Regular exercise may play a role in remodelling aSAT structure and proteomic profile in ways that may contribute to preserved cardiometabolic health.


Asunto(s)
Entrenamiento Aeróbico , Obesidad , Sobrepeso , Humanos , Masculino , Femenino , Obesidad/metabolismo , Obesidad/terapia , Sobrepeso/terapia , Sobrepeso/metabolismo , Adulto , Grasa Subcutánea Abdominal/metabolismo , Persona de Mediana Edad , Ejercicio Físico/fisiología , Estudios Transversales
2.
Am J Physiol Endocrinol Metab ; 325(5): E466-E479, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37729021

RESUMEN

Exercise training modifies lipid metabolism in skeletal muscle, but the effect of exercise training on intramyocellular lipid droplet (LD) abundance, size, and intracellular distribution in adults with obesity remains elusive. This study compared high-intensity interval training (HIIT) with more conventional moderate-intensity continuous training (MICT) on intramyocellular lipid content, as well as LD characteristics (size and number) and abundance within the intramyofibrillar (IMF) and subsarcolemmal (SS) regions of type I and type II skeletal muscle fibers in adults with obesity. Thirty-six adults with obesity [body mass index (BMI) = 33 ± 3 kg/m2] completed 12 wk (4 days/wk) of either HIIT (10 × 1 min, 90% HRmax + 1-min active recovery; n = 19) or MICT (45-min steady-state exercise, 70% HRmax; n = 17), while on a weight-maintaining diet throughout training. Skeletal muscle biopsies were collected from the vastus lateralis before and after training, and intramyocellular lipid content and intracellular LD distribution were measured by immunofluorescence microscopy. Both MICT and HIIT increased total intramyocellular lipid content by more than 50% (P < 0.01), which was attributed to a greater LD number per µm2 in the IMF region of both type I and type II muscle fibers (P < 0.01). Our findings also suggest that LD lipophagy (autophagy-mediated LD degradation) may be transiently upregulated the day after the last exercise training session (P < 0.02 for both MICT and HIIT). In summary, exercise programs for adults with obesity involving either MICT or HIIT increased skeletal muscle LD abundance via a greater number of LDs in the IMF region of the myocyte, thereby providing more lipid in close proximity to the site of energy production during exercise.NEW & NOTEWORTHY In this study, 12 wk of either moderate-intensity continuous training (MICT) or high-intensity interval training (HIIT) enhanced skeletal muscle lipid abundance by increasing lipid droplet number within the intramyofibrillar (IMF) region of muscle. Because the IMF associates with high energy production during muscle contraction, this adaptation may enhance lipid oxidation during exercise. Despite differences in training intensity and energy expenditure between MICT and HIIT, their effects on muscle lipid abundance and metabolism were remarkably similar.


Asunto(s)
Entrenamiento de Intervalos de Alta Intensidad , Gotas Lipídicas , Adulto , Humanos , Obesidad/terapia , Ejercicio Físico/fisiología , Metabolismo Energético/fisiología , Lípidos
3.
Obesity (Silver Spring) ; 31(5): 1347-1361, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36988872

RESUMEN

OBJECTIVE: The aims of this study were: 1) to assess relationships among insulin-mediated glucose uptake with standard clinical outcomes and deep-phenotyping measures (including fatty acid [FA] rate of appearance [FA Ra] into the systemic circulation); and 2) to examine the contribution of adipocyte size, fibrosis, and proteomic profile to FA Ra regulation. METHODS: A total of 66 adults with obesity (BMI = 34 [SD 3] kg/m2 ) were assessed for insulin sensitivity (hyperinsulinemic-euglycemic clamp), and stable isotope dilution methods quantified glucose, FA, and glycerol kinetics in vivo. Abdominal subcutaneous adipose tissue (aSAT) and skeletal muscle biopsies were collected, and magnetic resonance imaging quantified liver and visceral fat content. RESULTS: Insulin-mediated FA Ra suppression associated with insulin-mediated glucose uptake (r = 0.51; p < 0.01) and negatively correlated with liver (r = -0.36; p < 0.01) and visceral fat (r = -0.42; p < 0.01). aSAT proteomics from subcohorts of participants with low FA Ra suppression (n = 8) versus high FA Ra suppression (n = 8) demonstrated greater extracellular matrix collagen protein in low versus high FA Ra suppression. Skeletal muscle lipidomics (n = 18) revealed inverse correlations of FA Ra suppression with acyl-chain length of acylcarnitine (r = -0.42; p = 0.02) and triacylglycerol (r = -0.51; p < 0.01), in addition to insulin-mediated glucose uptake (acylcarnitine: r = -0.49; p < 0.01, triacylglycerol: r = -0.40; p < 0.01). CONCLUSIONS: Insulin's ability to suppress FA release from aSAT in obesity is related to enhanced insulin-mediated glucose uptake and metabolic health in peripheral tissues.


Asunto(s)
Resistencia a la Insulina , Insulina , Adulto , Humanos , Insulina/metabolismo , Ácidos Grasos/metabolismo , Proteómica , Obesidad/complicaciones , Tejido Adiposo/metabolismo , Resistencia a la Insulina/fisiología , Triglicéridos/metabolismo , Glucosa/metabolismo , Técnica de Clampeo de la Glucosa
4.
J Physiol ; 600(9): 2127-2146, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35249225

RESUMEN

Excessive adipose tissue mass underlies much of the metabolic health complications in obesity. Although exercise training is known to improve metabolic health in individuals with obesity, the effects of exercise training without weight loss on adipose tissue structure and metabolic function remain unclear. Thirty-six adults with obesity (body mass index = 33 ± 3 kg · m-2 ) were assigned to 12 weeks (4 days week-1 ) of either moderate-intensity continuous training (MICT; 70% maximal heart rate, 45 min; n = 17) or high-intensity interval training (HIIT; 90% maximal heart rate, 10 × 1 min; n = 19), maintaining their body weight throughout. Abdominal subcutaneous adipose tissue (aSAT) biopsy samples were collected once before and twice after training (1 day after last exercise and again 4 days later). Exercise training modified aSAT morphology (i.e. reduced fat cell size, increased collagen type 5a3, both P ≤ 0.05, increased capillary density, P = 0.05) and altered protein abundance of factors that regulate aSAT remodelling (i.e. reduced matrix metallopeptidase 9; P = 0.02; increased angiopoietin-2; P < 0.01). Exercise training also increased protein abundance of factors that regulate lipid metabolism (e.g. hormone sensitive lipase and fatty acid translocase; P ≤ 0.03) and key proteins involved in the mitogen-activated protein kinase pathway when measured the day after the last exercise session. However, most of these exercise-mediated changes were no longer significant 4 days after exercise. Importantly, MICT and HIIT induced remarkably similar adaptations in aSAT. Collectively, even in the absence of weight loss, 12 weeks of exercise training induced changes in aSAT structure, as well as factors that regulate metabolism and the inflammatory signal pathway in adults with obesity. KEY POINTS: Exercise training is well-known to improve metabolic health in obesity, although how exercise modifies the structure and metabolic function of adipose tissue, in the absence of weight loss, remains unclear. We report that both 12 weeks of moderate-intensity continuous training (MICT) and 12 weeks of high-intensity interval training (HIIT) induced modifications in adipose tissue structure and factors that regulate adipose tissue remodelling, metabolism and the inflammatory signal pathway in adults with obesity, even without weight loss (with no meaningful differences between MICT and HIIT). The modest modifications in adipose tissue structure in response to 12 weeks of MICT or HIIT did not lead to changes in the rate of fatty acid release from adipose tissue. These results expand our understanding about the effects of two commonly used exercise training prescriptions (MICT and HIIT) on adipose tissue remodelling that may lead to advanced strategies for improving metabolic health outcomes in adults with obesity.


Asunto(s)
Ejercicio Físico , Obesidad , Tejido Adiposo/metabolismo , Adulto , Ejercicio Físico/fisiología , Ácidos Grasos/metabolismo , Humanos , Obesidad/metabolismo , Grasa Subcutánea/metabolismo , Pérdida de Peso
5.
JCI Insight ; 7(4)2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35025761

RESUMEN

Mammalian skeletal muscle contains heterogenous myofibers with different contractile and metabolic properties that sustain muscle mass and endurance capacity. The transcriptional regulators that govern these myofiber gene programs have been elucidated. However, the hormonal cues that direct the specification of myofiber types and muscle endurance remain largely unknown. Here, we uncover the secreted factor Tsukushi (TSK) as an extracellular signal that is required for maintaining muscle mass, strength, and endurance capacity and that contributes to muscle regeneration. Mice lacking TSK exhibited reduced grip strength and impaired exercise capacity. Muscle transcriptomic analysis revealed that TSK deficiency results in a remarkably selective impairment in the expression of myofibrillar genes, characteristic of slow-twitch muscle fibers, that is associated with abnormal neuromuscular junction formation. AAV-mediated overexpression of TSK failed to rescue these myofiber defects in adult mice, suggesting that the effects of TSK on myofibers are likely restricted to certain developmental stages. Finally, mice lacking TSK exhibited diminished muscle regeneration following cardiotoxin-induced muscle injury. These findings support a crucial role of TSK as a hormonal cue in the regulation of contractile gene expression, endurance capacity, and muscle regeneration.


Asunto(s)
Contracción Muscular/fisiología , Músculo Esquelético/metabolismo , Proteoglicanos/genética , Regeneración , Animales , Ratones , Ratones Transgénicos , Modelos Animales , Fibras Musculares de Contracción Lenta/metabolismo , Músculo Esquelético/fisiopatología , Proteoglicanos/biosíntesis , Factores de Transcripción
6.
Exp Physiol ; 106(4): 820-827, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33559926

RESUMEN

NEW FINDINGS: What is the central question of this study? Does exercise training modify tissue iron storage in adults with obesity? What is the main finding and its importance? Twelve weeks of moderate-intensity exercise or high-intensity interval training lowered whole-body iron stores, decreased the abundance of the key iron storage protein in skeletal muscle (ferritin) and tended to lower hepatic iron content. These findings show that exercise training can reduce tissue iron storage in adults with obesity and might have important implications for obese individuals with dysregulated iron homeostasis. ABSTRACT: The regulation of iron storage is crucial to human health, because both excess and deficient iron storage have adverse consequences. Recent studies suggest altered iron storage in adults with obesity, with increased iron accumulation in their liver and skeletal muscle. Exercise training increases iron use for processes such as red blood cell production and can lower whole-body iron stores in humans. However, the effects of exercise training on liver and muscle iron stores in adults with obesity have not been assessed. The aim of this study was to determine the effects of 12 weeks of exercise training on whole-body iron stores, liver iron content and the abundance of ferritin (the key iron storage protein) in skeletal muscle in adults with obesity. Twenty-two inactive adults (11 women and 11 men; age, 31 ± 6 years; body mass index, 33 ± 3 kg/m2 ) completed 12 weeks (four sessions/week) of either moderate-intensity continuous training (MICT; 45 min at 70% of maximal heart rate; n = 11) or high-intensity interval training (HIIT; 10 × 1 min at 90% of maximal heart rate, interspersed with 1 min active recovery; n = 11). Whole-body iron stores were lower after training, as indicated by decreased plasma concentrations of ferritin (P = 3 × 10-5 ) and hepcidin (P = 0.02), without any change in C-reactive protein. Hepatic R2*, an index of liver iron content, was 6% lower after training (P = 0.06). Training reduced the skeletal muscle abundance of ferritin by 10% (P = 0.03), suggesting lower muscle iron storage. Interestingly, these adaptations were similar in MICT and HIIT groups. Our findings indicate that exercise training decreased iron storage in adults with obesity, which might have important implications for obese individuals with dysregulated iron homeostasis.


Asunto(s)
Entrenamiento de Intervalos de Alta Intensidad , Hierro , Adaptación Fisiológica , Adulto , Ejercicio Físico/fisiología , Femenino , Humanos , Masculino , Obesidad/metabolismo
7.
Exp Physiol ; 105(11): 1808-1814, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32888323

RESUMEN

NEW FINDINGS: What is the central question of this study? Obesity is associated with complex perturbations to iron homeostasis: is plasma ferritin concentration (a biomarker of whole-body iron stores) related to the abundance of ferritin (the key tissue iron storage protein) in skeletal muscle in adults with obesity? What is the main finding and its importance? Plasma ferritin concentration was tightly correlated with the abundance of ferritin in skeletal muscle, and this relationship persisted when accounting for sex, age, body mass index and plasma C-reactive protein concentration. Our findings suggest that skeletal muscle may be an important iron store. ABSTRACT: Obesity is associated with complex perturbations to whole-body and tissue iron homeostasis. Recent evidence suggests a potentially important influence of iron storage in skeletal muscle on whole-body iron homeostasis, but this association is not clearly resolved. The primary aim of this study was to assess the relationship between whole-body and skeletal muscle iron stores by measuring the abundance of the key iron storage (ferritin) and import (transferrin receptor) proteins in skeletal muscle, as well as markers of whole-body iron homeostasis in men (n = 19) and women (n = 43) with obesity. Plasma ferritin concentration (a marker of whole-body iron stores) was highly correlated with muscle ferritin abundance (r = 0.77, P = 2 × 10-13 ) and negatively associated with muscle transferrin receptor abundance (r = -0.76, P = 1 × 10-12 ). These relationships persisted when accounting for sex, age, BMI and plasma C-reactive protein concentration. In parallel with higher whole-body iron stores in our male versus female participants, men had 2.2-fold higher muscle ferritin abundance (P = 1 × 10-4 ) compared with women. In accordance with lower muscle iron storage, women had 2.7-fold higher transferrin receptor abundance (P = 7 × 10-10 ) compared with men. We conclude that muscle iron storage and import proteins are tightly and independently related to plasma ferritin concentration in adults with obesity, suggesting that skeletal muscle may be an underappreciated iron store.


Asunto(s)
Ferritinas , Obesidad , Adulto , Índice de Masa Corporal , Femenino , Humanos , Hierro , Masculino , Músculo Esquelético/metabolismo
8.
J Clin Endocrinol Metab ; 105(8)2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32492705

RESUMEN

OBJECTIVE: We compared the effects of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on insulin sensitivity and other important metabolic adaptations in adults with obesity. METHODS: Thirty-one inactive adults with obesity (age: 31 ±â€…6 years; body mass index: 33 ±â€…3 kg/m2) completed 12 weeks (4 sessions/week) of either HIIT (10 × 1-minute at 90%HRmax, 1-minute active recovery; n = 16) or MICT (45 minutes at 70%HRmax; n = 15). To assess the direct effects of exercise independent of weight/fat loss, participants were required to maintain body mass. RESULTS: Training increased peak oxygen uptake by ~10% in both HIIT and MICT (P < 0.0001), and body weight/fat mass were unchanged. Peripheral insulin sensitivity (hyperinsulinemic-euglycemic clamp) was ~20% greater the day after the final exercise session compared to pretraining (P < 0.01), with no difference between HIIT and MICT. When trained participants abstained from exercise for 4 days, insulin sensitivity returned to pretraining levels in both groups. HIIT and MICT also induced similar increases in abundance of many skeletal muscle proteins involved in mitochondrial respiration and lipid and carbohydrate metabolism. Training-induced alterations in muscle lipid profile were also similar between groups. CONCLUSION: Despite large differences in training intensity and exercise time, 12 weeks of HIIT and MICT induce similar acute improvements in peripheral insulin sensitivity the day after exercise, and similar longer term metabolic adaptations in skeletal muscle in adults with obesity. These findings support the notion that the insulin-sensitizing effects of both HIIT and MICT are mediated by factors stemming from the most recent exercise session(s) rather than adaptations that accrue with training.


Asunto(s)
Ejercicio Físico/fisiología , Entrenamiento de Intervalos de Alta Intensidad , Resistencia a la Insulina/fisiología , Insulina/metabolismo , Obesidad/rehabilitación , Adaptación Fisiológica , Adulto , Femenino , Humanos , Masculino , Músculo Esquelético/metabolismo , Obesidad/metabolismo , Conducta Sedentaria , Resultado del Tratamiento , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA