Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Cell Environ ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741272

RESUMEN

Excess soil salinity significantly impairs plant growth and development. Our previous reports demonstrated that the core circadian clock oscillator GIGANTEA (GI) negatively regulates salt stress tolerance by sequestering the SALT OVERLY SENSITIVE (SOS) 2 kinase, an essential component of the SOS pathway. Salt stress induces calcium-dependent cytoplasmic GI degradation, resulting in activation of the SOS pathway; however, the precise molecular mechanism governing GI degradation during salt stress remains enigmatic. Here, we demonstrate that salt-induced calcium signals promote the cytoplasmic partitioning of CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), leading to the 26S proteasome-dependent degradation of GI exclusively in the roots. Salt stress-induced calcium signals accelerate the cytoplasmic localization of COP1 in the root cells, which targets GI for 26S proteasomal degradation. Align with this, the interaction between COP1 and GI is only observed in the roots, not the shoots, under salt-stress conditions. Notably, the gi-201 cop1-4 double mutant shows an enhanced tolerance to salt stress similar to gi-201, indicating that GI is epistatic to COP1 under salt-stress conditions. Taken together, our study provides critical insights into the molecular mechanisms governing the COP1-mediated proteasomal degradation of GI for salt stress tolerance, raising new possibilities for developing salt-tolerant crops.

2.
Plant Signal Behav ; 18(1): 2287883, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38019725

RESUMEN

Soybean, a vital protein-rich crop, offers bioactivity that can mitigate various chronic human diseases. Nonetheless, soybean breeding poses a challenge due to the negative correlation between enhanced protein levels and overall productivity. Our previous studies demonstrated that applying gaseous phytohormone, ethylene, to soybean leaves significantly boosts the accumulation of free amino acids, particularly asparagine (Asn). Current studies also revealed that ethylene application to soybeans significantly enhanced both essential and non-essential amino acid contents in leaves and stems. Asn plays a crucial role in ammonia detoxification and reducing fatigue. However, the molecular evidence supporting this phenomenon remains elusive. This study explores the molecular mechanisms behind enhanced Asn accumulation in ethylene-treated soybean leaves. Transcriptional analysis revealed that ethylene treatments to soybean leaves enhance the transcriptional levels of key genes involved in Asn biosynthesis, such as aspartate aminotransferase (AspAT) and Asn synthetase (ASN), which aligns with our previous observations of elevated Asn levels. These findings shed light on the role of ethylene in upregulating Asn biosynthetic genes, subsequently enhancing Asn concentrations. This molecular insight into amino acid metabolism regulation provides valuable knowledge for the metabolic farming of crops, especially in elevating nutraceutical ingredients with non-genetic modification (GM) approach for improved protein content.


Asunto(s)
Asparagina , Glycine max , Aminoácidos/metabolismo , Asparagina/genética , Asparagina/análisis , Asparagina/metabolismo , Etilenos/metabolismo , Semillas/metabolismo , Glycine max/genética , Glycine max/metabolismo
3.
Plant Physiol Biochem ; 200: 107804, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37269823

RESUMEN

The tomato (Solanum lycopersicum) is widely consumed globally and renowned for its health benefits, including the reduction of cardiovascular disease and prostate cancer risk. However, tomato production faces significant challenges, particularly due to various biotic stresses such as fungi, bacteria, and viruses. To address this challenges, we employed the CRISPR/Cas9 system to modify the tomato NUCLEOREDOXIN (SlNRX) genes (SlNRX1 and SlNRX2) belonging to the nucleocytoplasmic THIOREDOXIN subfamily. CRISPR/Cas9-mediated mutations in SlNRX1 (slnrx1) plants exhibited resistance against bacterial leaf pathogen Pseudomonas syringae pv. maculicola (Psm) ES4326, as well as the fungal pathogen Alternaria brassicicola. However, the slnrx2 plants did not display resistance. Notably, the slnrx1 demonstrated elevated levels of endogenous salicylic acid (SA) and reduced levels of jasmonic acid after Psm infection, in comparison to both wild-type (WT) and slnrx2 plants. Furthermore, transcriptional analysis revealed that genes involved in SA biosynthesis, such as ISOCHORISMATE SYNTHASE 1 (SlICS1) and ENHANCED DISEASE SUSCEPTIBILITY 5 (SlEDS5), were upregulated in slnrx1 compared to WT plants. In addition, a key regulator of systemic acquired resistance, PATHOGENESIS-RELATED 1 (PR1), exhibited increased expression in slnrx1 compared to WT. These findings suggest that SlNRX1 acts as a negative regulator of plant immunity, facilitating infection by the Psm pathogen through interference with the phytohormone SA signaling pathway. Thus, targeted mutagenesis of SlNRX1 is a promising genetic means to enhance biotic stress resistance in crop breeding.


Asunto(s)
Ácido Salicílico , Solanum lycopersicum , Ácido Salicílico/metabolismo , Solanum lycopersicum/genética , Fitomejoramiento , Pseudomonas syringae/fisiología , Transducción de Señal/genética , Ciclopentanos/metabolismo , Enfermedades de las Plantas/microbiología , Regulación de la Expresión Génica de las Plantas
4.
Plant Commun ; 4(4): 100570, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-36864727

RESUMEN

Flowering is the primary stage of the plant developmental transition and is tightly regulated by environmental factors such as light and temperature. However, the mechanisms by which temperature signals are integrated into the photoperiodic flowering pathway are still poorly understood. Here, we demonstrate that HOS15, which is known as a GI transcriptional repressor in the photoperiodic flowering pathway, controls flowering time in response to low ambient temperature. At 16°C, the hos15 mutant exhibits an early flowering phenotype, and HOS15 acts upstream of photoperiodic flowering genes (GI, CO, and FT). GI protein abundance is increased in the hos15 mutant and is insensitive to the proteasome inhibitor MG132. Furthermore, the hos15 mutant has a defect in low ambient temperature-mediated GI degradation, and HOS15 interacts with COP1, an E3 ubiquitin ligase for GI degradation. Phenotypic analyses of the hos15 cop1 double mutant revealed that repression of flowering by HOS15 is dependent on COP1 at 16°C. However, the HOS15-COP1 interaction was attenuated at 16°C, and GI protein abundance was additively increased in the hos15 cop1 double mutant, indicating that HOS15 acts independently of COP1 in GI turnover at low ambient temperature. This study proposes that HOS15 controls GI abundance through multiple modes as an E3 ubiquitin ligase and transcriptional repressor to coordinate appropriate flowering time in response to ambient environmental conditions such as temperature and day length.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ADN/genética , Flores/genética , Temperatura , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
5.
Front Plant Sci ; 13: 1007542, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36237515

RESUMEN

Anthropogenic activities cause the leaching of heavy metals into groundwater and their accumulation in soil. Excess levels of heavy metals cause toxicity in plants, inducing the production of reactive oxygen species (ROS) and possible death caused by the resulting oxidative stress. Heavy metal stresses repress auxin biosynthesis and transport, inhibiting plant growth. Here, we investigated whether nickel (Ni) heavy metal toxicity is reduced by exogenous auxin application and whether Ni stress tolerance in Arabidopsis thaliana is mediated by the bifunctional enzyme YUCCA6 (YUC6), which functions as an auxin biosynthetic enzyme and a thiol-reductase (TR). We found that an application of up to 1 µM exogenous indole-3-acetic acid (IAA) reduces Ni stress toxicity. yuc6-1D, a dominant mutant of YUC6 with high auxin levels, was more tolerant of Ni stress than wild-type (WT) plants, despite absorbing significantly more Ni. Treatments of WT plants with YUCASIN, a specific inhibitor of YUC-mediated auxin biosynthesis, increased Ni toxicity; however yuc6-1D was not affected by YUCASIN and remained tolerant of Ni stress. This suggests that rather than the elevated IAA levels in yuc6-1D, the TR activity of YUC6 might be critical for Ni stress tolerance. The loss of TR activity in YUC6 caused by the point-mutation of Cys85 abolished the YUC6-mediated Ni stress tolerance. We also found that the Ni stress-induced ROS accumulation was inhibited in yuc6-1D plants, which consequently also showed reduced oxidative damage. An enzymatic assay and transcriptional analysis revealed that the peroxidase activity and transcription of PEROXIREDOXIN Q were enhanced by Ni stress to a greater level in yuc6-1D than in the WT. These findings imply that despite the need to maintain endogenous IAA levels for basal Ni stress tolerance, the TR activity of YUC6, not the elevated IAA levels, plays the predominant role inNi stress tolerance by lowering Ni-induced oxidative stress.

6.
Biochem Biophys Res Commun ; 635: 12-18, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36252332

RESUMEN

Thioredoxins (TRXs) are small oxidoreductase proteins located in various subcellular compartments. Nucleoredoxin (NRX) is a nuclear-localized TRX and a key component for the integration of the antioxidant system with the immune response. Although NRX is well characterized in biotic stress responses, its functional role in abiotic stress responses is still elusive. To understand whether NRX contributes to heat stress response in tomato (Solanum lycopersicum), we generated CRISPR/Cas9-mediated mutations in SlNRX1 (slnrx1). Interestingly, the slnrx1 mutant was extremely sensitive to heat stress with higher electrolyte leakage, malondialdehyde contents, and H2O2 concentration compared to wild-type tomato plants, suggesting that SlNRX1 negatively regulates heat stress-induced oxidative damage. We also found that transcripts encoding antioxidant enzymes and Heat-Shock Proteins (HSPs) in slnrx1 were down-regulated either in the absence or presence of heat stress. These data suggest that NRX1 is a positive regulator for heat stress tolerance by elevating antioxidant capacity and inducing HSPs to protect cells against heat stress-induced oxidative damage and protein denaturation, respectively.


Asunto(s)
Solanum lycopersicum , Solanum lycopersicum/metabolismo , Antioxidantes/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Peróxido de Hidrógeno/metabolismo , Respuesta al Choque Térmico/genética , Oxidorreductasas/metabolismo , Estrés Oxidativo/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
7.
Proc Natl Acad Sci U S A ; 119(33): e2207275119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35939685

RESUMEN

The circadian clock is a timekeeping, homeostatic system that temporally coordinates all major cellular processes. The function of the circadian clock is compensated in the face of variable environmental conditions ranging from normal to stress-inducing conditions. Salinity is a critical environmental factor affecting plant growth, and plants have evolved the SALT OVERLY SENSITIVE (SOS) pathway to acquire halotolerance. However, the regulatory systems for clock compensation under salinity are unclear. Here, we show that the plasma membrane Na+/H+ antiporter SOS1 specifically functions as a salt-specific circadian clock regulator via GIGANTEA (GI) in Arabidopsis thaliana. SOS1 directly interacts with GI in a salt-dependent manner and stabilizes this protein to sustain a proper clock period under salinity conditions. SOS1 function in circadian clock regulation requires the salt-mediated secondary messengers cytosolic free calcium and reactive oxygen species, pointing to a distinct regulatory role for SOS1 in addition to its function as a transporter to maintain Na+ homeostasis. Our results demonstrate that SOS1 maintains homeostasis of the salt response under high or daily fluctuating salt levels. These findings highlight the genetic capacity of the circadian clock to maintain timekeeping activity over a broad range of salinity levels.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ritmo Circadiano , Estrés Salino , Intercambiadores de Sodio-Hidrógeno , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Estabilidad Proteica , Intercambiadores de Sodio-Hidrógeno/genética , Intercambiadores de Sodio-Hidrógeno/metabolismo
8.
Front Plant Sci ; 13: 846294, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35283886

RESUMEN

Light plays a crucial role in plant growth and development, and light signaling is integrated with various stress responses to adapt to different environmental changes. During this process, excessive protein synthesis overwhelms the protein-folding ability of the endoplasmic reticulum (ER), causing ER stress. Although crosstalk between light signaling and ER stress response has been reported in plants, the molecular mechanisms underlying this crosstalk are poorly understood. Here, we demonstrate that the photoreceptor phytochrome B (phyB) induces the expression of ER luminal protein chaperones as well as that of unfolded protein response (UPR) genes. The phyB-5 mutant was less sensitive to tunicamycin (TM)-induced ER stress than were the wild-type plants, whereas phyB-overexpressing plants displayed a more sensitive phenotype under white light conditions. ER stress response genes (BiP2 and BiP3), UPR-related bZIP transcription factors (bZIP17, bZIP28, and bZIP60), and programmed cell death (PCD)-associated genes (OXI1, NRP1, and MC8) were upregulated in phyB-overexpressing plants, but not in phyB-5, under ER stress conditions. The ER stress-sensitive phenotype of phyB-5 under red light conditions was eliminated with a reduction in photo-equilibrium by far-red light and darkness. The N-terminal domain of phyB is essential for signal transduction of the ER stress response in the nucleus, which is similar to light signaling. Taken together, our results suggest that phyB integrates light signaling with the UPR to relieve ER stress and maintain proper plant growth.

9.
Front Pharmacol ; 13: 1076351, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36605393

RESUMEN

Medicinal plants are the primary source of traditional healthcare systems in many rural areas mostly in developing countries. This study aimed to document and analyze the diversity, distribution, and sustainability of the traditional medicinal plants used by the Gurung people of the Sikles region in western Nepal. Ethnobotanical data were collected through focus group discussions and individual interviews, and analyzed using descriptive and inferential statistics. Prior informed consent was obtained before each interview. Quantitative ethnobotanical indices such as informant consensus factor, relative frequency of citation, and use values were also calculated. A possible association among these indices was tested using correlation analysis. A total of 115 wild medicinal plant species belonging to 106 genera and 71 families were documented. Asteraceae and Rosaceae were the dominant families whereas herbs were the most dominant life form. Roots were the most used plant part, paste was the most common method of preparation, and most of the medical formulations were taken orally. The highest number of medicinal plants were used to treat stomach disorders. The average informant consensus value of 0.79 indicates a high consensus among respondents in selecting medicinal plants. Lindera neesiana, Neopicrorhiza scrophulariiflora, Paris polyphylla, and Bergenia ciliata were found to be high-ranking medicinal plants based on the relative frequency of citation and use value. The genders did not affect medicinal plants' knowledge but age had a significant correlation. Most of the informants agreed that medicinal plants are under pressure due to overharvesting and a lack of proper forest management practices. The number of medicinal plants reported from the study area indicates that the Gurung people possess rich traditional knowledge, and the vegetation of the Sikles region constitutes rich diversity of medicinal plants.

10.
J Plant Biol ; 65(1): 21-28, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34602836

RESUMEN

Viral diseases are extremely widespread infections that change constantly through mutations. To produce vaccines against viral diseases, transient expression systems are employed, and Nicotiana benthamiana (tobacco) plants are a rapidly expanding platform. In this study, we developed a recombinant protein vaccine targeting the major capsid protein (MCP) of iridovirus fused with the lysine motif (LysM) and coiled-coil domain of coronin 1 (ccCor1) for surface display using Lactococcus lactis. The protein was abundantly produced in N. benthamiana in its N-glycosylated form. Total soluble proteins isolated from infiltrated N. benthamiana leaves were treated sequentially with increasing ammonium sulfate solution, and recombinant MCP mainly precipitated at 40-60%. Additionally, affinity chromatography using Ni-NTA resin was applied for further purification. Native structure analysis using size exclusion chromatography showed that recombinant MCP existed in a large oligomeric form. A minimum OD600 value of 0.4 trichloroacetic acid (TCA)-treated L. lactis was required for efficient recombinant MCP display. Immunogenicity of recombinant MCP was assessed in a mouse model through enzyme-linked immunosorbent assay (ELISA) with serum-injected recombinant MCP-displaying L. lactis. In summary, we developed a plant-based recombinant vaccine production system combined with surface display on L. lactis.

11.
Plant Cell Environ ; 44(9): 3034-3048, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34129248

RESUMEN

Abiotic stress, a serious threat to plants, occurs for extended periods in nature. Abscisic acid (ABA) plays a critical role in abiotic stress responses in plants. Therefore, stress responses mediated by ABA have been studied extensively, especially in short-term responses. However, long-term stress responses mediated by ABA remain largely unknown. To elucidate the mechanism by which plants respond to prolonged abiotic stress, we used long-term ABA treatment that activates the signalling against abiotic stress such as dehydration and investigated mechanisms underlying the responses. Long-term ABA treatment activates constitutive photomorphogenic 1 (COP1). Active COP1 mediates the ubiquitination of golden2-like1 (GLK1) for degradation, contributing to lowering expression of photosynthesis-associated genes such as glutamyl-tRNA reductase (HEMA1) and protochlorophyllide oxidoreductase A (PORA), resulting in the suppression of chloroplast development. Moreover, COP1 activation and GLK1 degradation upon long-term ABA treatment depend on light intensity. Additionally, plants with COP1 mutation or exposed to higher light intensity were more sensitive to salt stress. Collectively, our results demonstrate that long-term treatment of ABA leads to activation of COP1 in a light intensity-dependent manner for GLK1 degradation to suppress chloroplast development, which we propose to constitute a mechanism of balancing normal growth and stress responses upon the long-term abiotic stress.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/fisiología , Cloroplastos/fisiología , Reguladores del Crecimiento de las Plantas/fisiología , Factores de Transcripción/fisiología , Ubiquitina-Proteína Ligasas/fisiología , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Dimerización , Relación Dosis-Respuesta en la Radiación , Luz , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
12.
J Integr Plant Biol ; 63(8): 1505-1520, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34051041

RESUMEN

Influenza epidemics frequently and unpredictably break out all over the world, and seriously affect the breeding industry and human activity. Inactivated and live attenuated viruses have been used as protective vaccines but exhibit high risks for biosafety. Subunit vaccines enjoy high biosafety and specificity but have a few weak points compared to inactivated virus or live attenuated virus vaccines, especially in low immunogenicity. In this study, we developed a new subunit vaccine platform for a potent, adjuvant-free, and multivalent vaccination. The ectodomains of hemagglutinins (HAs) of influenza viruses were expressed in plants as trimers (tHAs) to mimic their native forms. tHAs in plant extracts were directly used without purification for binding to inactivated Lactococcus (iLact) to produce iLact-tHAs, an antigen-carrying bacteria-like particle (BLP). tHAs BLP showed strong immune responses in mice and chickens without adjuvants. Moreover, simultaneous injection of two different antigens by two different formulas, tHAH5N6 + H9N2 BLP or a combination of tHAH5N6 BLP and tHAH9N2 BLP, led to strong immune responses to both antigens. Based on these results, we propose combinations of plant-based antigen production and BLP-based delivery as a highly potent and cost-effective platform for multivalent vaccination for subunit vaccines.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Subtipo H9N2 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Lactococcus/virología , Nicotiana/genética , Vacunas Combinadas/inmunología , Animales , Antígenos Virales/inmunología , Pollos/inmunología , Retículo Endoplásmico/metabolismo , Hemaglutininas/química , Hemaglutininas/metabolismo , Inmunidad/efectos de los fármacos , Inmunización , Ratones , Extractos Vegetales/aislamiento & purificación , Plantas Modificadas Genéticamente , Dominios Proteicos , Multimerización de Proteína
13.
Molecules ; 26(4)2021 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-33546346

RESUMEN

Humic acid (HA) is a principal component of humic substances, which make up the complex organic matter that broadly exists in soil environments. HA promotes plant development as well as stress tolerance, however the precise molecular mechanism for these is little known. Here we conducted transcriptome analysis to elucidate the molecular mechanisms by which HA enhances salt stress tolerance. Gene Ontology Enrichment Analysis pointed to the involvement of diverse abiotic stress-related genes encoding HEAT-SHOCK PROTEINs and redox proteins, which were up-regulated by HA regardless of salt stress. Genes related to biotic stress and secondary metabolic process were mainly down-regulated by HA. In addition, HA up-regulated genes encoding transcription factors (TFs) involved in plant development as well as abiotic stress tolerance, and down-regulated TF genes involved in secondary metabolic processes. Our transcriptome information provided here provides molecular evidences and improves our understanding of how HA confers tolerance to salinity stress in plants.


Asunto(s)
Proteínas de Arabidopsis/biosíntesis , Arabidopsis/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Sustancias Húmicas , Estrés Salino/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transcriptoma/efectos de los fármacos
14.
Mol Plant ; 11(4): 568-583, 2018 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-29317286

RESUMEN

Endocytosis and subsequent trafficking pathways are crucial for regulating the activity of plasma membrane-localized proteins. Depending on cellular and physiological conditions, the internalized cargoes are sorted at (and transported from) the trans-Golgi network/early endosome (TGN/EE) to the vacuole for degradation or recycled back to the plasma membrane. How this occurs at the molecular level remains largely elusive. Here, we provide evidence that the ENTH domain-containing protein AtECA4 plays a crucial role in recycling cargoes from the TGN/EE to the plasma membrane in Arabidopsis thaliana. AtECA4:sGFP primarily localized to the TGN/EE and plasma membrane (at low levels). Upon NaCl or mannitol treatment, AtECA4:sGFP accumulated at the TGN/EE at an early time point but was released from the TGN/EE to the cytosol at later time points. The ateca4 mutant showed higher resistance to osmotic stress and more sensitive to exogenous abscisic acid (ABA) than the wild type, as well as increased expression of ABA-inducible genes RD29A and RD29B. Consistently, ABCG25, a plasma membrane-localized ABA exporter, accumulated at the prevacuolar compartment in ateca4, indicating a defect in recycling to the plasma membrane. However, the role of AtECA4 in cargo recycling is not specific to ABCG25, as it also functions in the recycling of BRI1. These results suggest that AtECA4 plays a crucial role in the recycling of endocytosed cargoes from the TGN/EE to the plasma membrane.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , ATPasas Transportadoras de Calcio/metabolismo , Membrana Celular/metabolismo , Endosomas/metabolismo , Red trans-Golgi/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , ATPasas Transportadoras de Calcio/genética , Sequías , Regulación de la Expresión Génica de las Plantas , Presión Osmótica , Transporte de Proteínas , Compuestos de Piridinio/metabolismo , Compuestos de Amonio Cuaternario/metabolismo , Salinidad
15.
Plant Cell ; 29(6): 1388-1405, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28584166

RESUMEN

During cytokinesis in plants, trans-Golgi network-derived vesicles accumulate at the center of dividing cells and undergo various structural changes to give rise to the planar cell plate. However, how this conversion occurs at the molecular level remains elusive. In this study, we report that SH3 Domain-Containing Protein 2 (SH3P2) in Arabidopsis thaliana plays a crucial role in converting vesicles to the planar cell plate. SH3P2 RNAi plants showed cytokinesis-defective phenotypes and produced aggregations of vesicles at the leading edge of the cell plate. SH3P2 localized to the leading edge of the cell plate, particularly the constricted or curved regions of the cell plate. The BAR domain of SH3P2 induced tubulation of vesicles. SH3P2 formed a complex with dynamin-related protein 1A (DRP1A) and affected DRP1A accumulation to the cell plate. Based on these results, we propose that SH3P2 functions together with DRP1A to convert the fused vesicles to tubular structures during cytokinesis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Proteínas Portadoras/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Portadoras/genética , Citocinesis/genética , Citocinesis/fisiología , Dinaminas/genética , Dinaminas/metabolismo , Plantas Modificadas Genéticamente/citología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Red trans-Golgi/metabolismo , Red trans-Golgi/fisiología
16.
Plant Physiol Biochem ; 70: 368-73, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23827697

RESUMEN

The seven members of the 90-kDa heat shock protein (Hsp90) family encode highly conserved molecular chaperones essential for cell survival in Arabidopsis thaliana. Hsp90 are abundant proteins, localized in different compartments with AtHsp90.1-4 in the cytosol and AtHsp90.5-7 in different organelles. Among the AtHsp90, AtHsp90.1, is stress-inducible and shares comparatively low sequence identity with the constitutively expressed AtHsp90.2-4. Even though abundant information is available on mammalian cytosolic Hsp90 proteins, it is unknown whether cytosolic Hsp90 proteins display different structural and functional properties. We have now analyzed two A. thalianas cytosolic Hsp90s, AtHsp90.1 and AtHsp90.3, for functional divergence. AtHsp90.3 showed higher holdase chaperone activity than AtHsp90.1, although both AtHsp90s exhibited effective chaperone activity. Size-exclusion chromatography revealed different oligomeric states distinguishing the two Hsp90 proteins. While AtHsp90.1 exists in several oligomeric states, including monomers, dimers and higher oligomers, AtHsp90.3 exists predominantly in a high oligomeric state. High oligomeric state of AtHsp90.1 showed higher holdase chaperone activity than the respective monomer or dimer states. When high oligomeric forms of AtHsp90.1 and AtHsp90.3 are reduced by DTT, activity was reduced compared to that found in the native high oligomeric state. In addition, ATP-dependent foldase chaperone activity of AtHsp90.3 was higher with strong intrinsic ATPase activity than that of AtHsp90.1. As a conclusion, the two A. thaliana cytosolic Hsp90 proteins display different functional activities depending on structural differences, implying functional divergence although the proteins are localized to the same sub-cellular organelle.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Citosol/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Adenosina Trifosfato/metabolismo , Dimerización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...