Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Phys Condens Matter ; 25(30): 305004, 2013 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-23836777

RESUMEN

The temperature dependence of the irreversible phase transition from a two-dimensional gas to an ordered zero-dimensional solid on the Si(111)-7 × 7 surface was studied using photoemission spectroscopy. With increasing Na coverage, the two-dimensional Na gas, which is a state of highly mobile Na atoms, undergoes a phase transition into ordered zero-dimensional magic nanoclusters at room temperature. The critical Na coverage of the phase transition was found to increase with reduced temperature. This was used to develop a gas-solid phase diagram of Na atoms on the Si(111)-7 × 7 surface as a function of Na coverage and sample temperature based on the electronic structure. The temperature dependence of the phase transition can be ascribed to the suppression of the thermal energy that is required to overcome the energetic barrier between the two-dimensional gas and the zero-dimensional solid at low temperature, where three different hopping mechanisms are related to the phase transition.

2.
Phys Rev Lett ; 95(19): 196402, 2005 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-16384001

RESUMEN

The ground state property of a Au-induced atomic wire array on a stepped Si(553) surface with interesting 1D metallic bands was investigated. Electron diffraction and scanning tunneling microscopy reveal an intriguing coexistence of triple- and double-period lattice distortions at low temperature. Angle-resolved photoemission observes both the nearly 1/3- and 1/2-filled bands to gradually open energy gaps upon cooling. We explain these unusual findings as due to the occurrence of Peierls distortions of triple and double periods on the two different atomic-scale chain elements, respectively, within a single unit wire. The two Peierls distortions are suggested to have different transition temperatures and little lateral correlation between each other.

3.
Phys Rev Lett ; 95(12): 126102, 2005 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-16197087

RESUMEN

Scanning tunneling microscopy of a quasi-one-dimensional (1D) metal-insulator transition in an In nanowire array on the Si(111) surface reveals unprecedented details in the transition dynamics. The transition proceeds in microscopic first order, namely, through the domain-by-domain conversion at the nanoscale, from the metallic to the insulating phase or vice versa. The definition of domains and their effective transition temperatures (Tc) are strongly correlated with the distribution of defects. Below Tc, the condensation and the fluctuation of 1D charge density waves are observed within the isolated metallic domains, as well as at the domain boundaries. The appearance of such isolated condensates suggests a strong intrawire coupling: a manifestation of the 1D nature of the critical fluctuation, as well as the origin of the first-order transition.

4.
Phys Rev Lett ; 93(10): 106401, 2004 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-15447426

RESUMEN

One dimensional (1D) metals are unstable at low temperature undergoing a metal-insulator transition coupled with a periodic lattice distortion, a Peierls transition. Angle-resolved photoemission study for the 1D metallic chains of In on Si(111), featuring a metal-insulator transition and triple metallic bands, clarifies in detail how the multiple band gaps are formed at low temperature. In addition to the gap opening for a half-filled ideal 1D band with a proper Fermi surface nesting, two other quasi-1D metallic bands are found to merge into a single band, opening a unique but k-dependent energy gap through an interband charge transfer. This result introduces a novel gap-opening mechanism for a multiband Peierls system where the interband interaction is important.

5.
Phys Rev Lett ; 91(19): 196403, 2003 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-14611595

RESUMEN

One-dimensional atomic chains on Au/Si(557) feature two proximal 1D bands near the Fermi level, which were controversially attributed as a spinon-holon pair of a Luttinger liquid. Angle-resolved photoemission shows that only one band is metallic with the neighboring one gapped at room temperature. Furthermore, even the metallic branch is found to undergo a metal-insulator transition upon cooling, which follows a mean-field-type behavior. Scanning tunneling microscopy observes two apparently unequivocal chains on the surface, one of which exhibits periodicity doubling accompanying the metal-insulator transition. The surface 1D structure is thus concluded to be insulating at low temperature with a Peierls-type instability.

6.
Phys Rev Lett ; 88(19): 196401, 2002 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-12005651

RESUMEN

We find that foreign adsorbates acting as local impurities can induce a metal-insulator transition by pinning a charge-density wave (CDW) on the quasi-1D metallic In/Si(111)-(4x1) chain system. Our scanning tunneling microscopy image clearly reveals the presence of a new local 4x2 structure nucleated by Na adatoms at room temperature, which turns out to be insulating with a doubled periodicity along the chains. We directly determine a CDW gap energy Delta = 105+/-8 meV by identifying a characteristic loss peak in our high-resolution electron-energy-loss spectra. We thus report the first observation of a local impurity-derived Peierls-like reconstruction of a quasi-1D system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA