Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Pharm Biomed Anal ; 244: 116126, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38581931

RESUMEN

Polydopamine (PDA) is an insoluble biopolymer with a dark brown-black color that forms through the autoxidation of dopamine. Because of its outstanding biocompatibility and durability, PDA holds enormous promise for various applications, both in the biomedical and non-medical domains. To ensure human safety, protect health, and minimize environmental impacts, the assessment of PDA toxicity is important. In this study, metabolomics and lipidomics assessed the impact of acute PDA exposure on Caenorhabditis elegans (C. elegans). The findings revealed a pronounced perturbation in the metabolome and lipidome of C. elegans at the L4 stage following 24 hours of exposure to 100 µg/mL PDA. The changes in lipid composition varied based on lipid classes. Increased lipid classes included lysophosphatidylethanolamine, triacylglycerides, and fatty acids, while decreased species involved in several sub-classes of glycerophospholipids and sphingolipids. Besides, we detected 37 significantly affected metabolites in the positive and 8 in the negative ion modes due to exposure to PDA in C. elegans. The metabolites most impacted by PDA exposure were associated with purine metabolism, biosynthesis of valine, leucine, and isoleucine; aminoacyl-tRNA biosynthesis; and cysteine and methionine metabolism, along with pantothenate and CoA biosynthesis; the citrate cycle (TCA cycle); and beta-alanine metabolism. In conclusion, PDA exposure may intricately influence the metabolome and lipidome of C. elegans. The combined application of metabolomics and lipidomics offers additional insights into the metabolic perturbations involved in PDA-induced biological effects and presents potential biomarkers for the assessment of PDA safety.


Asunto(s)
Caenorhabditis elegans , Indoles , Lipidómica , Metaboloma , Metabolómica , Polímeros , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/efectos de los fármacos , Animales , Polímeros/metabolismo , Indoles/metabolismo , Metabolómica/métodos , Lipidómica/métodos , Metaboloma/efectos de los fármacos , Lípidos , Metabolismo de los Lípidos/efectos de los fármacos
2.
Phytochemistry ; 210: 113649, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36963708

RESUMEN

Three undescribed iridoid glucosides and nine known compounds were isolated from Vitex rotundifolia L. f. Their structural elucidation was performed based on their spectroscopic data or acid hydrolysis followed by HPLC analysis and comparison of their NMR data with those reported in the literature. These iridoids were then evaluated for inflammatory effects through inhibition on NO production level in LPS-stimulated RAW264.7 cells. The active compounds, rotundifoliin C, isonishindacin A, agnuside, and eurostoside, were further investigated for their anti-inflammatory mechanisms of action on expression levels of iNOS and COX-2 proteins. In addition, V. rotundifolia fractions also significantly inhibited LPS-induced IL-8 production, with IC50 values ranging from 9.81 to 54.31 µg/mL. Rotundifoliin A, agnuside, VR-I (10-O-vanilloyl aucubin), and eurostoside showed inhibition rates of 55.5%, 94.6%, 55.6%, and 81.9% on IL-8 production at concentrations of 100 µM, respectively, compared to those of control without sample addition. The therapeutic properties of the plant might give rise to develop the functional products to treat inflammatory diseases.


Asunto(s)
Iridoides , Vitex , Iridoides/farmacología , Iridoides/química , Vitex/química , Lipopolisacáridos/farmacología , Interleucina-8 , Antiinflamatorios/farmacología , Antiinflamatorios/química
3.
Nat Prod Res ; : 1-6, 2023 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-36800928

RESUMEN

The concern about the quality of medicinal herbs is becoming important due to the poor quality of commercial products like cosmetics, functional foods, and natural medicine produced from them. However, there is a lack of modern analytical methods to evaluate the constituents of P. macrophyllus until the moment. This paper reports an analytical method based on UHPLC-DAD and UHPLC-MS/MS MRM methods to evaluate the ethanolic extracts of P. macrophyllus leaves and twigs. 15 main constituents were identified using a UHPLC-DAD-ESI-MS/MS profiling. Subsequently, a reliable analytical method was established and successfully used to quantitate the constituent's content using four marker compounds in leaf and twig extracts of this plant. The result obtained from the current study demonstrated the secondary metabolites and the variety of their derivatives in this plant. The analytical method can help evaluate the quality of P. macrophyllus and develop high-value functional materials.

4.
Cell Signal ; 105: 110610, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36707041

RESUMEN

Loliolide (LL), a naturally occurring monoterpenoid lactone isolated from Vicia tenuifolia Roth, can exhibit numerous pharmacological effects such as those related to anti-Parkinson, anti-oxidant, anti-cholinesterase, and anti-depressant. Epithelial-mesenchymal transition (EMT) plays a pivotal role in regulating tumor metastasis. CXCR4 and CXCR7 are G-protein-coupled receptors (GPRs), which can be stimulated by CXCL12. CXCL12/CXCR4/CXCXR7 axis can cause activation of multiple pathways including MAPKs, JAK/STAT pathway, and manganese superoxide dismutase (MnSOD) signaling. These events can initiate EMT process and induce cell invasion and migration. Here, we investigated whether LL can modulate the CXCR4 and CXCR7 and EMT process in colon cancer and breast cancer cells. We found that LL suppressed levels of CXCR4 and CXCR7, and exerted an inhibitory effect on these chemokines even after stimulation by CXCL12. LL suppressed expression of MnSOD and mesenchymal markers, whereas induced epithelial markers. In addition, LL significantly attenuated cellular invasion, migration, and metastasis. We noted that LL inhibited CXCR4/7 and EMT process even after stimulation of CXCL12 and MnSOD overexpression. Therefore, in this study, we provide evidences that targeting CXCR4/7 and MnSOD could inhibit the invasion, migration, and metastasis of cancer cells as well as negatively regulate the EMT process. Overall, our study suggested that LL might act as a potent suppressor of EMT process against colon and breast cancer cells.


Asunto(s)
Neoplasias de la Mama , Neoplasias Colorrectales , Humanos , Femenino , Transducción de Señal , Transición Epitelial-Mesenquimal , Neoplasias de la Mama/tratamiento farmacológico , Quinasas Janus , Movimiento Celular , Factores de Transcripción STAT , Neoplasias Colorrectales/tratamiento farmacológico
5.
Antioxidants (Basel) ; 11(10)2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36290712

RESUMEN

Ilex rotunda Thunb., has been used to treat common cold, tonsillitis, and eczema. It is also a source of antioxidants. However, information regarding its antioxidative phytochemical composition is still incomplete and limited. In this present study, we initially determined DPPH radical scavenging activity of the extracts of I. rotunda fruits, twigs, and leaves. Among them, the twig extract exhibited a potential of antioxidant capacity. Based on antioxidant effect guided experiments, extraction condition using 80% EtOH was then optimized. DPPH and ABTS radical scavenging assays were also performed for fractions. The n-butanol fraction showed the highest antioxidant effect. Using chromatographic methods, eight marker compounds (1-8) were further isolated. Their structures were determined by spectroscopic and mass data. Method validation was employed to quantitate contents of these eight marker compounds. Subsequently, the HPLC-DPPH method was used to evaluate the contribution of certain compounds to total antioxidant activity of the extract. Lastly, parallel artificial membrane permeability assay for blood-brain barrier (PAMPA-BBB) was applied to investigate brain-penetrable antioxidants from I. rotunda extract. As a result, compound 7 (4,5-dicaffeoylquinic acid) showed significant antioxidant activity and penetration across the BBB via transcellular passive diffusion. Our findings suggested that compound 7 can be used as a therapeutic potential candidate in natural product-based central nervous system (CNS) drug discovery.

6.
Antioxidants (Basel) ; 11(3)2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35326104

RESUMEN

An extraction method using 80% EtOH was selected and applied to obtain the total extracts from leaves, flowers, fruits, twigs, and roots of Vitex rotundifolia L.f. based on the antioxidant activity-guided experiments. Subsequently, total extract from each part of V. rotundifolia was successfully partitioned into fractions, which were evaluated for their antioxidant and anti-inflammatory properties via DPPH, ABTS, and NO assays, respectively. Among them, EtOAc (E) and n-butanol (B) fractions showed the potent antioxidant activity and the methylene chloride (MC) fractions of roots, leaves, and fruits that exhibited strong scavenging activity on DPPH and ABTS radicals. In the anti-inflammatory assay, n-hexane (H) and MC fractions of leaves potently inhibited NO production in LPS-stimulated RAW264.7 cells, followed by E fractions derived from fruits, flowers, twigs, and roots, along with B fractions from flowers and twigs. Additionally, a comprehensive HPLC-decoupled MS profiling was established and validated using seven isolated marker compounds (1-7), which were identified by analysis of their UV, NMR, and MS data. The established method was also applied for quantification of these marker compounds in each organ collected from different locations, and to assess their antioxidant capacity by a screening DPPH-HPLC method. Principal component analysis suggested the botanical organs from this plant correlated with the marker compound contents in association with bioactivity. The study results are a prelude to further studies involving the active fractions and provide a comprehensive insight into the functional products of this plant against oxidative diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...