Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
NPJ Precis Oncol ; 8(1): 111, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773241

RESUMEN

Patient-derived organoids (PDOs) are valuable in predicting response to cancer therapy. PDOs are ideal models for precision oncologists. However, their practical application in guiding timely clinical decisions remains challenging. This study focused on patients with advanced EGFR-mutated non-small cell lung cancer and employed a cancer organoid-based diagnosis reactivity prediction (CODRP)-based precision oncology platform to assess the efficacy of EGFR inhibitor treatments. CODRP was employed to evaluate EGFR-tyrosine kinase inhibitors (TKI) drug sensitivity. The results were compared to those obtained using area under the curve index. This study validated this index by testing lung cancer-derived organoids in 14 patients with lung cancer. The CODRP index-based drug sensitivity test reliably classified patient responses to EGFR-TKI treatment within a clinically suitable 10-day timeline, which aligned with clinical drug treatment responses. This approach is promising for predicting and analyzing the efficacy of anticancer, ultimately contributing to the development of a precision medicine platform.

2.
Molecules ; 26(19)2021 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-34641349

RESUMEN

High-throughput, pillar-strip-based assays have been proposed as a drug-safety screening tool for developmental toxicity. In the assay described here, muscle cell culture and differentiation were allowed to occur at the end of a pillar strip (eight pillars) compatible with commercially available 96-well plates. Previous approaches to characterize cellular differentiation with immunostaining required a burdensome number of washing steps; these multiple washes also resulted in a high proportion of cellular loss resulting in poor yield. To overcome these limitations, the approach described here utilizes cell growth by easily moving the pillars for washing and immunostaining without significant loss of cells. Thus, the present pillar-strip approach is deemed suitable for monitoring high-throughput myogenic differentiation. Using this experimental high-throughput approach, eight drugs (including two well-known myogenic inhibitory drugs) were tested at six doses in triplicate, which allows for the generation of dose-response curves of nuclei and myotubes in a 96-well platform. As a result of comparing these F-actin (an actin-cytoskeleton protein), nucleus, and myotube data, two proposed differentiation indices-curve-area-based differentiation index (CA-DI) and maximum-point-based differentiation index (MP-DI) were generated. Both indices successfully allowed for screening of high-myogenic inhibitory drugs, and the maximum-point-based differentiation index (MP-DI) experimentally demonstrated sensitivity for quantifying drugs that inhibited myogenic differentiation.


Asunto(s)
Bioensayo/métodos , Diferenciación Celular , Fibras Musculares Esqueléticas/citología , Mioblastos/citología , Preparaciones Farmacéuticas/administración & dosificación , Animales , Proliferación Celular , Ratones , Fibras Musculares Esqueléticas/efectos de los fármacos , Mioblastos/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA