Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Neurol ; 14: 1320773, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38107646

RESUMEN

Background: The changes in blood viscosity can influence the shear stress at the vessel wall, but there is limited evidence regarding the impact on thrombogenesis and acute stroke. We aimed to investigate the effect of blood viscosity on stroke and the clinical utility of blood viscosity measurements obtained immediately upon hospital arrival. Methods: Patients with suspected stroke visiting the hospital within 24 h of the last known well time were enrolled. Point-of-care testing was used to obtain blood viscosity measurements before intravenous fluid infusion. Blood viscosity was measured as the reactive torque generated at three oscillatory frequencies (1, 5, and 10 rad/sec). Blood viscosity results were compared among patients with ischemic stroke, hemorrhagic stroke, and stroke mimics diagnosed as other than stroke. Results: Among 112 enrolled patients, blood viscosity measurements were accomplished within 2.4 ± 1.3 min of vessel puncture. At an oscillatory frequency of 10 rad/sec, blood viscosity differed significantly between the ischemic stroke (24.2 ± 4.9 centipoise, cP) and stroke mimic groups (17.8 ± 6.5 cP, p < 0.001). This finding was consistent at different oscillatory frequencies (134.2 ± 46.3 vs. 102.4 ± 47.2 at 1 rad/sec and 39.2 ± 11.5 vs. 30.4 ± 12.4 at 5 rad/sec, Ps < 0.001), suggesting a relationship between decreases in viscosity and shear rate. The area under the receiver operating curve for differentiating cases of stroke from stroke mimic was 0.79 (95% confidence interval, 0.69-0.88). Conclusion: Patients with ischemic stroke exhibit increases in whole blood viscosity, suggesting that blood viscosity measurements can aid in differentiating ischemic stroke from other diseases.

2.
Adv Mater ; 35(52): e2306092, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37739451

RESUMEN

Conversion of sunlight and organic carbon substrates to sustainable energy sources through microbial metabolism has great potential for the renewable energy industry. Despite recent progress in microbial photosynthesis, the development of microbial platforms that warrant efficient and scalable fuel production remains in its infancy. Efficient transfer and retrieval of gaseous reactants and products to and from microbes are particular hurdles. Here, inspired by water lily leaves floating on water, a microbial device designed to operate at the air-water interface and facilitate concomitant supply of gaseous reactants, smooth capture of gaseous products, and efficient sunlight delivery is presented. The floatable device carrying Rhodopseudomonas parapalustris, of which nitrogen fixation activity is first determined through this study, exhibits a hydrogen production rate of 104 mmol h-1  m-2 , which is 53 times higher than that of a conventional device placed at a depth of 2 cm in the medium. Furthermore, a scaled-up device with an area of 144 cm2 generates hydrogen at a high rate of 1.52 L h-1  m-2 . Efficient nitrogen fixation and hydrogen generation, low fabrication cost, and mechanical durability corroborate the potential of the floatable microbial device toward practical and sustainable solar energy conversion.

3.
Nat Nanotechnol ; 18(7): 754-762, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37106047

RESUMEN

Storing solar energy in chemical bonds aided by heterogeneous photocatalysis is desirable for sustainable energy conversion. Despite recent progress in designing highly active photocatalysts, inefficient solar energy and mass transfer, the instability of catalysts and reverse reactions impede their practical large-scale applications. Here we tackle these challenges by designing a floatable photocatalytic platform constructed from porous elastomer-hydrogel nanocomposites. The nanocomposites at the air-water interface feature efficient light delivery, facile supply of water and instantaneous gas separation. Consequently, a high hydrogen evolution rate of 163 mmol h-1 m-2 can be achieved using Pt/TiO2 cryoaerogel, even without forced convection. When fabricated in an area of 1 m2 and incorporated with economically feasible single-atom Cu/TiO2 photocatalysts, the nanocomposites produce 79.2 ml of hydrogen per day under natural sunlight. Furthermore, long-term stable hydrogen production in seawater and highly turbid water and photoreforming of polyethylene terephthalate demonstrate the potential of the nanocomposites as a commercially viable photocatalytic system.

4.
Langmuir ; 38(19): 6013-6022, 2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35507428

RESUMEN

Clogging is ubiquitous. It happens in a wide range of material processing and causes severe performance degradation or process breakdown. In this study, we investigate clogging dynamics in a single micropore by controlling the surface property of the particle and processing condition. Microfluidic observation is conducted to investigate particle deposition in a contraction microchannel where polystyrene suspension is injected as a feed solution. The particle deposition area is quantified using the images taken using a CCD camera in both upstream and downstream of the microchannel. Pressure drop across the microchannel is also measured. When the particle interaction is repulsive, the deposition occurs mostly in downstream, while an opposite tendency is identified when the particle interaction is attractive. More complex deposition characteristics are found as the flow rate is changed. Particle flux density and the ratio of lift force to colloidal force are introduced to explain the clogging dynamics. This study provides a useful insight to alleviate clogging issues by controlling the colloidal interaction and hydrodynamic stress.

5.
Langmuir ; 37(46): 13712-13728, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34751580

RESUMEN

The evolution of the normal stress and microstructure in the drying process of bidisperse colloidal films is studied using the Brownian dynamics simulation. Here, we show that the formation process of small-on-top stratification can be explained by normal stress development. At high PeL's, a stratified layer with small particles is formed near the interface. The accumulated particles near the interface induce the localization of normal stress so that the normal stress at the interface increases from the beginning of drying. We analyze this stress development from two points of view, on the global length scale and particle length scale. On the global length scale, the localization of normal stress is quantified by the scaled normal stress difference between the interface and substrate. For all PeL's tested in this study, the scaled normal stress difference increases until the accumulation region reaches the substrate. After the maximum, the stress difference remains at the maximum at lower PeL's, while it decreases at higher PeL's. The microstructural analysis shows that this stress development is explained through the evolution of the particle contact number distribution at the interface and substrate. On the particle length scale, we derive the scaled local force applied to each type of particle by decomposing the local normal stress. At high PeL's, the scaled local force for the large particle is large compared to that for the small particle near the interface, indicating that the large particles are strongly pushed away from the interface. Associating the volume fraction profile with the local force field, we suggest that the strong scaled force for the large particle is attributed to the significant increase in the average number of small particles in contact with large ones. This study has significance in probing the drying mechanism of bidisperse colloidal films and the stratification mechanism.


Asunto(s)
Desecación , Fenómenos Mecánicos
6.
Polymers (Basel) ; 12(12)2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33353124

RESUMEN

A ternary composite of poly(lactic acid) (PLA), poly(caprolactone) (PCL), and carbon black (CB) shows the PCL-induced CB self-aggregation and percolation formation when the amount of the PCL phase as the secondary phase is as small as the amount of CB. Furthermore, when the drop size of the PCL phase becomes smaller, the ternary composite forms a percolation of high order structure, resulting in a remarkable enhancement of the electrical conductivity (~4 × 10-2 S/m with 4 wt.% CB). To further control the percolation structure, the composite fabrication is controlled by splitting a typical single-step mixing process into two steps, focusing on the dispersion of the secondary PCL phase and the CB particles separately. Under the single-step mixing protocol, the ternary composite shows a structure with greater CB aggregation in the form of a high aspect ratio and large aggregates (aggregate perimeter~aggregate size 0.7). Meanwhile, the two-step mixing process causes the CB aggregates to expand and create a higher structure (aggregate perimeter~aggregate size 0.8). The reduced size of the secondary phase under a mixing condition with high shear force prior to the addition of CB provides a larger interfacial area for CB to diffuse into the PCL phase during the subsequent mixing step, resulting in a further expansion of CB aggregation throughout the composite. The particle percolation of such a high order structure is attributed to high storage modulus (G'), high Young's modulus, high dielectric loss (ε″), and negative-positive switching of dielectric constant at high frequency (of 103 Hz) of composite.

7.
Soft Matter ; 16(43): 9864-9875, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33073283

RESUMEN

We carry out a numerical study to investigate the dynamics of non-Brownian hard-sphere suspensions near the liquid and crystal coexistence region in small to large amplitude oscillatory shear flow. The first normal stress difference (N1) and related rheological functions are carefully analyzed, focusing on the strain stiffening phenomenon, which occurs in the large strain amplitude region. Under oscillatory shear, we observe several unique behaviors of N1. A negative nonzero mean value of N1 (N1,0) is observed for the applied strain amplitudes. The change of the sign, from negative to positive, at the maximum value of N1 (N1,max) is observed at a specific point, which is not consistent with the critical strain amplitude (γ0,c) at which the modulus begins to deviate from linear viscoelasticity. The behavior of N1 in the oscillatory shear flow is different from that of N1 in steady shear flow, that is, the characteristics of N1 in strain stiffening and shear thickening are quite distinguished from each other. We also perform structural analysis to confirm the relationship between the rheological properties and microstructure of the suspension. A strong correlation is observed between the global bond order parameter (Ψ6) and the distortions in both nonlinear shear and normal stresses. The most noticeable characteristic is captured through the maximum of the global bond order parameter (Ψ6,max). The strain amplitude at the slope change of Ψ6,max corresponds to the point where a unique behavior of N1 is observed, i.e. the change of the sign in N1,max, but a strong correlation is not captured at γ0,c. This demonstrates that the normal stress responds to particle ordering more sensitively than other rheological functions based on shear stress like dynamic moduli. As far as we are concerned, the behavior of N1 has rarely been fully explored and related with the strain stiffening of non-Brownian suspensions so far. Therefore, this study has significance as the first report to strictly analyze strain stiffening along with the first normal stress difference N1.

8.
Materials (Basel) ; 13(20)2020 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-33066170

RESUMEN

A binder plays a critical role in dispersion of coating liquids and the quality of coating. Poly(vinylidene fluoride) (PVDF) is widely used as a binder in cathode slurries; however, its role as a binder is still under debate. In this paper, we study the role of PVDF on the rheology of cathode battery slurries consisting of Li(Ni1/3Mn1/3Co1/3)O2 (NCM), carbon black (CB) and N-methyl-2-pyrrolidone (NMP). Rheology and microstructure of cathode slurries are systemically investigated with three model suspensions: CB/PVDF/NMP, NCM/PVDF/NMP and NCM/CB/PVDF/NMP. To highlight the role of PVDF in cathode slurries, we prepare the same model suspensions by replacing PVDF with PVP, and we compare the role of PVDF to PVP in the suspension rheology. We find that PVDF adsorbs neither onto NCM nor CB surface, which can be attributed to its poor affinity to NCM and CB. Rheological measurements suggest that PVDF mainly increases matrix viscosity in the suspension without affecting the microstructure formed by CB and NCM particles. In contrast to PVDF, PVP stabilizes the structure of CB and NCM in the model suspensions, as it is adsorbed on the CB surface. This study will provide a useful insight to fundamentally understand the rheology of cathode slurries.

9.
Phys Rev E ; 101(5-1): 053302, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32575323

RESUMEN

We suggest a numerical method to describe particle dynamics at the fluid interface. We adopt a coupling strategy by combining the color gradient lattice Boltzmann method (CGLBM) and smoothed profile method (SPM). The proposed scheme correctly resolves the momentum transfer among the solid particles and fluid phases while effectively controlling the wetting condition. To validate the present algorithm (CGLBM-SPM), we perform several simulation tests like wetting a single solid particle and capillary interactions in two solid particles floating at the fluid interface. Simulation results show a good agreement with the analytical solutions available and look qualitatively reasonable. From these analyses, we conclude that the key features of the particle dynamics at the fluid interface are correctly resolved in our simulation method. In addition, we apply the present method for spinodal decomposition of a ternary mixture, which contains two-immiscible fluids with solid particles. By adding solid particles, fluid segregation is much suppressed than in the binary liquid mixture case. Furthermore, it has different morphology, such as with the jamming structure of the particles at the fluid interface, and captured images are similar to bicontinuous interfacially jammed emulsion gels in literature. From these results, we confirm the feasibility of the present method to describe soft matters; in particular, emulsion systems that contain solid particles at the interface.

10.
J Hazard Mater ; 391: 122223, 2020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32036316

RESUMEN

Air pollution is one of the most serious problems facing mankind because of its impact on ecosystems and human beings. Although particulate matter (PM) consists of both filterable PM (FPM) and condensable PM (CPM), most research has focused on eliminating only FPM. In this work, we introduce a filter system that removes both FPM and CPM from pollution source with high efficiency. The system consists of two reduced graphene oxide (rGO) filters and a condenser between them that can remove the usual FPM and at the same time CPM-induced FPM that typically leaves the pollution source unabated. The filters, quite effective in removing the PM with their three-dimensional structure, retain the removal capability even at high temperature and in acidic condition that prevail at the pollution source. The proposed rGO system could provide a complete solution for removal of both FPM and CPM from the pollution source.

11.
Micromachines (Basel) ; 10(12)2019 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-31801229

RESUMEN

In this study, we report on a numerical study on design optimization for a microfluidic crossflow filtration system incorporated with the staggered herringbone micromixer (SHM). Computational fluid dynamics (CFD) and the Taguchi method were employed to find out an optimal set of design parameters, mitigating fouling in the filtration system. The flow and the mass transfer characteristics in a reference SHM model and a plain rectangular microchannel were numerically investigated in detail. Downwelling flows in the SHM model lead to backtransport of foulants from the permeable wall, which slows down the development of the concentration boundary layer in the filtration system. Four design parameters - the number of grooves, the groove depth, the interspace between two neighboring grooves, and the interspace between half mixing periods - were chosen to construct a set of numerical experiments using an orthogonal array from the Taguchi method. The Analysis of Variance (ANOVA) using the evaluated signal-to-noise (SN) ratios enabled us to identify the contribution of each design parameter on the performance. The proposed optimal SHM model indeed showed the lowest growth rate of the wall concentration compared to other SHM models.

12.
Soft Matter ; 14(42): 8651-8659, 2018 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-30328462

RESUMEN

We explore the relaxation behavior of model colloidal gels under steady shear flow by means of orthogonal superposition rheometry. Fumed silica and carbon black dispersions in Newtonian matrices are used as a model system. As shear rate increases, the frequency dependent orthogonal moduli of the gels shift along the frequency axis without changing their shape, which finally can be superimposed to yield a single master curve. This indicates that the shear rate tunes a master clock for overall relaxation modes in the sheared colloidal gels to produce a "time-shear rate superposition (TSS)", as temperature does in polymeric liquids to produce a time-temperature superposition (TTS). The horizontal shift factor required at each shear rate to obtain the master curve is found to be directly proportional to the suspension viscosity for all the cases. From this result, we suggest that the suspension viscosity determines the overall relaxation time of the particles in the flowing colloidal gel.

13.
Langmuir ; 34(38): 11454-11463, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30176146

RESUMEN

Deformation and breakup of a single agglomerate exposed to pure planar extensional flow in a cross-channel were experimentally investigated. Aggregation was generated by applying shear with destabilized polystyrene particles, and the fractal dimension, df, of the agglomerate was 2.25. The aggregation focused on the center of the channel by sheath flow was rotated while approaching stagnant point. Then, the aspect ratio increased as it deformed close to the stagnant point. The probability of the breakup and the fragment distribution were dependent upon the viscosity and flow rate and were superimposed on a master curve as a function of applied stress. With the increase in stress, the projected area of the fragment that was split by the flow decreased with a power-law relationship, and the exponent was in agreement with the model prediction.

14.
Langmuir ; 31(51): 13639-46, 2015 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-26634946

RESUMEN

A systematic study has been performed to investigate the effect of surface potential of nanoparticles on the rheological behavior of bimodal suspensions, using a model system consisting of polystyrene latex (primary size ∼530 nm) and alumina-coated silica (primary size ∼12 nm) particles. The surface potential of small particles was tuned by varying the solution pH, causing them to be repulsive to each other, attractive to each other, and oppositely charged to the large particles, while the large particles remained electrostatically stabilized. We found that the rheological properties could be dramatically changed from viscous to gel-like depending on the surface potential and concentration of small particles. A colloidal gel was induced by small particles when the small particles had the opposite charge to the large particles and a volume fraction of 10(-4) < ϕsmall < 10(-3), and when the small particles were attractive to each other above a critical threshold, ϕsmall > 10(-4). Cryo-SEM distinguished the gel structures to be either short bridging gels produced by oppositely charged small particles or long bridging gels or dense gels produced by attractive small particles. On the basis of this rheological behavior and microstructure, we prepared a phase diagram of highly size-asymmetric bimodal colloids with respect to the surface chemistry and concentration of small particles.

15.
Soft Matter ; 11(48): 9262-72, 2015 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-26524658

RESUMEN

The dynamics and rheological behavior of colloidal gels under oscillatory shear flow have been studied by using the Brownian dynamics simulations. The dynamics is studied under the oscillatory shear of small, medium, and large amplitudes. In the small amplitude oscillatory shear (SAOS) regime, the colloidal gel retains a rigid-chain network structure. The colloidal gel oscillates with small structural fluctuations and the elastic stress shows a linear viscoelastic response. In the medium amplitude oscillatory shear (MAOS) regime, the rigid network structure is ruptured, and a negative correlation between the absolute value of strain and the average bond number is observed. The elastic stress shows a transient behavior in between the SAOS and LAOS responses. In the large amplitude oscillatory shear (LAOS) regime, the colloidal gel shows a soft chain structure. Contrary to the negative correlation in the MAOS regime, the colloidal gel shows an oscillating dynamics with a positive correlation between the absolute value of strain and the average bond number. The soft chain structure exhibits no elasticity at small strain, while it shows strong elasticity at large strain. The oscillating dynamics and the rheological behavior are discussed in terms of the microstructural change from the rigid to soft chain structure.

16.
Dent Mater J ; 34(5): 702-6, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26438995

RESUMEN

Preheating of dental composites improves their flowability, facilitating successful restorations. However, the flowability of dental composites is affected not only by temperature but also by the deformation conditions. In the present work, the effects of various deformation conditions upon the viscoelastic properties of a preheated dental composite were studied. The rheological properties of Z350 dental composites at 25, 45, and 60°C were measured by a strain-controlled rheometer. When a low strain (0.03%) was applied, the preheated composite exhibited greater shear storage modulus (G') and complex viscosity (η*) than a room-temperature composite. Oppositely, when a high strain (50%) was applied, G' and η* of a preheated composite were lower than those of a room-temperature composite. Preheating of dental composites might be helpful in clinical practice both to increase the slumping resistance when minimal manipulation is used (e.g., during the build-up of a missing cusp tip) and to increase flowability when manipulation entailing high shear strain is applied (e.g., when uncured composite resin is spread on a dentin surface).


Asunto(s)
Resinas Compuestas/química , Resinas Compuestas/efectos de la radiación , Análisis del Estrés Dental , Elasticidad , Calor , Ensayo de Materiales , Viscosidad
17.
ACS Nano ; 9(10): 10186-202, 2015 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-26361723

RESUMEN

Coculturing stem cells with the desired cell type is an effective method to promote the differentiation of stem cells. The features of the membrane used for coculturing are crucial to achieving the best outcome. Not only should the membrane act as a physical barrier that prevents the mixing of the cocultured cell populations, but it should also allow effective interactions between the cells. Unfortunately, conventional membranes used for coculture do not sufficiently meet these requirements. In addition, cell harvesting using proteolytic enzymes following coculture impairs cell viability and the extracellular matrix (ECM) produced by the cultured cells. To overcome these limitations, we developed nanothin and highly porous (NTHP) membranes, which are ∼20-fold thinner and ∼25-fold more porous than the conventional coculture membranes. The tunable pore size of NTHP membranes at the nanoscale level was found crucial for the formation of direct gap junctions-mediated contacts between the cocultured cells. Differentiation of the cocultured stem cells was dramatically enhanced with the pore size-customized NTHP membrane system compared to conventional coculture methods. This was likely due to effective physical contacts between the cocultured cells and the fast diffusion of bioactive molecules across the membrane. Also, the thermoresponsive functionality of the NTHP membranes enabled the efficient generation of homogeneous, ECM-preserved, highly viable, and transfer-printable sheets of cardiomyogenically differentiated cells. The coculture platform developed in this study would be effective for producing various types of therapeutic multilayered cell sheets that can be differentiated from stem cells.


Asunto(s)
Técnicas de Cocultivo/instrumentación , Membranas Artificiales , Células Madre Mesenquimatosas/citología , Mioblastos/citología , Nanoestructuras/química , Animales , Bioimpresión/instrumentación , Diferenciación Celular , Línea Celular , Humanos , Nanoestructuras/ultraestructura , Porosidad , Ratas , Temperatura
18.
Artículo en Inglés | MEDLINE | ID: mdl-26274168

RESUMEN

We report a type of colloidal gel, induced by a minute incremental addition of mutually attractive small particles (size ∼12 nm) to a suspension of highly charged large particles (size ∼500 nm). The gel's morphological behavior does not follow the typical power-law scaling for fractal clusters. Its unique scaling behavior has two distinct power-law indices, based on particle volume fraction. We show the unique scaling behavior arises when nonfractal networks of large particles are bridged by small-particle clusters, which occurs between a lower and upper critical boundary of small particle volume fraction.

19.
Soft Matter ; 11(20): 4061-74, 2015 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-25909879

RESUMEN

Concentrated hard-sphere suspensions in the liquid and crystal coexistence region show a unique nonlinear behavior under a large amplitude oscillatory shear flow, the so-called strain stiffening, in which the viscosity or modulus suddenly starts to increase near a critical strain amplitude. Even though this phenomenon has been widely reported in experiments, its key mechanism has never been investigated in a systematic way. To have a good understanding of this behavior, a numerical simulation was performed using the lattice Boltzmann method (LBM). Strain stiffening was clearly observed at large strain amplitudes, and the critical strain amplitude showed an angular frequency dependency. The distortion of the shear stress appeared near the critical strain amplitude, and the nonlinear behavior was quantified by the Fourier transformation (FT) and the stress decomposition methods. Above the critical strain amplitude, an increase in the global bond order parameter Ψ(6) was observed at the flow reversal. The maximum of Ψ(6) and the maximum shear stress occurred at the same strain. These results show how strongly the ordered structure of the particles is related to the stress distortion. The ordered particles maintained a bond number of "two" with alignment with the compressive axis, and they were distributed over a narrow range of angular distribution (110°-130°). In addition, the ordered structure was formed near the lowest shear rate region (the flow reversal). The characteristics of the ordered structure were remarkably different from those of the hydroclusters which are regarded as the origin of shear thickening. It is clear that strain stiffening and shear thickening originate from different mechanisms. Our results clearly demonstrate how the ordering of the particles induces strain stiffening in the liquid and crystal coexistence region.

20.
Langmuir ; 31(6): 1892-900, 2015 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-25611871

RESUMEN

We study the mechanism of depletion stabilization and the resultant microstructure of aqueous suspensions of nanosized silica and poly(vinyl alcohol) (PVA). Rheology, small-angle light scattering (SALS), and small-angle X-ray scattering (SAXS) techniques enable us to analyze the microstructure at broad length scale from single particle size to the size of a cluster of aggregated particles. As PVA concentration increases, the microstructure evolves from bridging flocculation, steric stabilization, depletion flocculation to depletion stabilization. To our surprise, when depletion stabilization occurs, the suspension shows the stabilization at the cluster length scale, while maintaining fractal aggregates at the particle length scale. This sharply contrasts previously reported studies on the depletion stabilization of microsized particle and polymer suspensions, which exhibits the stabilization at the particle length scale. On the basis of the evaluation of depletion interaction, we propose that the depletion energy barrier exists between clusters rather than particles due to the comparable size of silica particle and the radius gyration of PVA.


Asunto(s)
Nanopartículas/química , Alcohol Polivinílico/química , Floculación , Modelos Moleculares , Conformación Molecular , Tamaño de la Partícula , Reología , Suspensiones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...