Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 49(12): 3312-3315, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38875608

RESUMEN

Systems that can image in three dimensions at cellular resolution and across different locations within an organism may enable insights into complex biological processes, such as immune responses, for which a single location measurement may be insufficient. In this Letter, we describe an in vivo two-site imaging probe (TIP) that can simultaneously image two anatomic sites with a maximum separation of a few centimeters. The TIP consists of two identical bendable graded index (GRIN) lenses and is demonstrated by a two-photon two-color fluorescence imaging system. Each GRIN lens has a field of view of 162 × 162 × 170 µm3, a nominal numerical aperture of 0.5, a magnification of 0.7, and working distances of 0.2 mm in air for both ends. A blind linear unmixing algorithm is applied to suppress bleedthrough between channels. We use this system to successfully demonstrate two-site two-photon two-color imaging of two biomedically relevant samples, i.e., (1) a mixture of two autofluorescent anti-cancer drugs and (2) a live hybrid tumor consisting of two spectrally distinct fluorescent cell lines.


Asunto(s)
Imagenología Tridimensional , Imagenología Tridimensional/métodos , Endoscopía/métodos , Endoscopía/instrumentación , Animales , Humanos , Línea Celular Tumoral , Ratones
2.
Sci Transl Med ; 15(712): eadi0069, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37672566

RESUMEN

The lack of reliable predictive biomarkers to guide effective therapy is a major obstacle to the advancement of therapy for high-grade gliomas, particularly glioblastoma (GBM), one of the few cancers whose prognosis has not improved over the past several decades. With this pilot clinical trial (number NCT04135807), we provide first-in-human evidence that drug-releasing intratumoral microdevices (IMDs) can be safely and effectively used to obtain patient-specific, high-throughput molecular and histopathological drug response profiling. These data can complement other strategies to inform the selection of drugs based on their observed antitumor effect in situ. IMDs are integrated into surgical practice during tumor resection and remain in situ only for the duration of the otherwise standard operation (2 to 3 hours). None of the six enrolled patients experienced adverse events related to the IMD, and the exposed tissue was usable for downstream analysis for 11 out of 12 retrieved specimens. Analysis of the specimens provided preliminary evidence of the robustness of the readout, compatibility with a wide array of techniques for molecular tissue interrogation, and promising similarities with the available observed clinical-radiological responses to temozolomide. From an investigational aspect, the amount of information obtained with IMDs allows characterization of tissue effects of any drugs of interest, within the physiological context of the intact tumor, and without affecting the standard surgical workflow.


Asunto(s)
Glioblastoma , Glioma , Humanos , Glioma/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Temozolomida/uso terapéutico
3.
Ann Surg ; 277(5): e1143-e1149, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35129472

RESUMEN

OBJECTIVE: To evaluate the safety and feasibility of implantation and retrieval of a novel implantable microdevice (IMD) in NSCLC patients undergoing operative resection. BACKGROUND: Adjuvant therapy has limited impact on postsurgical outcomes in NSCLC due to the inability to predict optimal treatment regimens. METHODS: An IMD measuring 6.5 mm by 0.7 mm, containing micro-reservoirs allowing for high-throughput localized drug delivery, was developed and loaded with 12 chemotherapeutic agents. Five patients with peripheral lung lesions larger than 1.0 cm were enrolled in this phase 1 clinical study. IMDs were inserted into tumors intraoperatively under direct vision, removed with the resected specimen, and retrieved in pathology. Surrounding tissues were sectioned, stained, and analyzed for tissue drug response to the IMD-delivered microdoses of these agents by a variety of pharmacodynamic markers. RESULTS: A total of 14 IMDs were implanted intraoperatively with 13 (93%) successfully retrieved. After technique refinement, IMDs were reliably inserted and retrieved in open, Video-Assisted Thoracoscopic Surgery, and robotic cases. No severe adverse reactions were observed. The one retained IMD has remained in place without movement or any adverse effects. Analysis of patient blood revealed no detection of chemotherapeutic agents. We observed differential sensitivities of patient tumors to the drugs on the IMD. CONCLUSIONS: A multi-drug IMD can be safely inserted and retrieved into lung tumors during a variety of surgical approaches. Future studies will encompass preoperative placement to better examine specific tumor responsiveness to therapeutic agents, allowing clinicians to tailor treatment regimens to the microenvironment of each patient.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/cirugía , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/cirugía , Neoplasias Pulmonares/patología , Predicción , Cirugía Torácica Asistida por Video , Microambiente Tumoral
4.
Opt Express ; 30(20): 36651-36664, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36258589

RESUMEN

Graded index (GRIN) lens endoscopy has broadly benefited biomedical microscopic imaging by enabling accessibility to sites not reachable by traditional benchtop microscopes. It is a long-held notion that GRIN lenses can only be used as rigid probes, which may limit their potential for certain applications. Here, we describe bendable and long-range GRIN microimaging probes for a variety of potential micro-endoscopic biomedical applications. Using a two-photon fluorescence imaging system, we have experimentally demonstrated the feasibility of three-dimensional imaging through a 500-µm-diameter and ∼11 cm long GRIN lens subject to a cantilever beam-like deflection with a minimum bend radius of ∼25 cm. Bend-induced perturbation to the field of view and resolution has also been investigated quantitatively. Our development alters the conventional notion of GRIN lenses and enables a range of innovative applications. For example, the demonstrated flexibility is highly desirable for implementation into current and emerging minimally invasive clinical procedures, including a pioneering microdevice for high-throughput cancer drug selection.


Asunto(s)
Cristalino , Lentes , Cristalino/diagnóstico por imagen , Fotones , Endoscopía/métodos , Imagenología Tridimensional
5.
Nat Biotechnol ; 40(12): 1823-1833, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35788566

RESUMEN

Systematically identifying synergistic combinations of targeted agents and immunotherapies for cancer treatments remains difficult. In this study, we integrated high-throughput and high-content techniques-an implantable microdevice to administer multiple drugs into different sites in tumors at nanodoses and multiplexed imaging of tumor microenvironmental states-to investigate the tumor cell and immunological response signatures to different treatment regimens. Using a mouse model of breast cancer, we identified effective combinations from among numerous agents within days. In vivo studies in three immunocompetent mammary carcinoma models demonstrated that the predicted combinations synergistically increased therapeutic efficacy. We identified at least five promising treatment strategies, of which the panobinostat, venetoclax and anti-CD40 triple therapy was the most effective in inducing complete tumor remission across models. Successful drug combinations increased spatial association of cancer stem cells with dendritic cells during immunogenic cell death, suggesting this as an important mechanism of action in long-term breast cancer control.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Inmunoterapia , Panobinostat , Sistemas de Liberación de Medicamentos , Línea Celular Tumoral
6.
Transl Oncol ; 21: 101427, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35472731

RESUMEN

Long-term treatment outcomes for patients with high grade ovarian cancers have not changed despite innovations in therapies. There is no recommended assay for predicting patient response to second-line therapy, thus clinicians must make treatment decisions based on each individual patient. Patient-derived xenograft (PDX) tumors have been shown to predict drug sensitivity in ovarian cancer patients, but the time frame for intraperitoneal (IP) tumor generation, expansion, and drug screening is beyond that for tumor recurrence and platinum resistance to occur, thus results do not have clinical utility. We describe a drug sensitivity screening assay using a drug delivery microdevice implanted for 24 h in subcutaneous (SQ) ovarian PDX tumors to predict treatment outcomes in matched IP PDX tumors in a clinically relevant time frame. The SQ tumor response to local microdose drug exposure was found to be predictive of the growth of matched IP tumors after multi-week systemic therapy using significantly fewer animals (10 SQ vs 206 IP). Multiplexed immunofluorescence image analysis of phenotypic tumor response combined with a machine learning classifier could predict IP treatment outcomes against three second-line cytotoxic therapies with an average AUC of 0.91.

7.
Front Bioeng Biotechnol ; 10: 855755, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35372313

RESUMEN

A main impediment to effective development of new therapeutics for central nervous system disorders, and for the in vivo testing of biological hypotheses in the brain, is the ability to rapidly measure the effect of novel agents and treatment combinations on the pathophysiology of native brain tissue. We have developed a miniaturized implantable microdevice (IMD) platform, optimized for direct stereotactic insertion into the brain, which enables the simultaneous measurement of multiple drug effects on the native brain tissue in situ. The IMD contains individual reservoirs which release microdoses of single agents or combinations into confined regions of the brain, with subsequent spatial analysis of phenotypic, transcriptomic or metabolomic effects. Using murine models of Alzheimer's disease (AD), we demonstrate that microdoses of various approved and investigational CNS drugs released from the IMD within a local brain region exhibit in situ phenotypes indicative of therapeutic responses, such as neuroprotection, reduction of hyperphosphorylation, immune cell modulation, and anti-inflammatory effects. We also show that local treatments with drugs affecting metabolism provide evidence for regulation of metabolite profiles and immune cell function in hMAPT AD mice. The platform should prove useful in facilitating the rapid testing of pharmacological or biological treatment hypotheses directly within native brain tissues (of various animal models and in patients) and help to confirm on-target effects, in situ pharmacodynamics and drug-induced microenvironment remodeling, much more efficiently than currently feasible.

8.
Front Cell Dev Biol ; 10: 1032360, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36619865

RESUMEN

Tumor-infiltrating immune cells experience significant metabolic reprogramming in the tumor microenvironment (TME), and they share similar metabolic pathways and nutrient needs with malignant cells. This positions these cell types in direct nutrient competition in the TME. We currently lack a complete understanding of the similarities, differences, and functional consequences of the metabolic pathways utilized by activated immune cells from different lineages versus neoplastic cells. This study applies a novel in situ approach using implantable microdevices to expose the tumor to 27 controlled and localized metabolic perturbations in order to perform a systematic investigation into the metabolic regulation of the cellular fitness and persistence between immune and tumor cells directly within the native TME. Our findings identify the most potent metabolites, notably glutamine and arginine, that induce a favorable metabolic immune response in a mammary carcinoma model, and reveal novel insights on less characterized pathways, such as cysteine and glutathione. We then examine clinical samples from cancer patients to confirm the elevation of these pathways in tumor regions that are enriched in activated T cells. Overall, this work provides the first instance of a highly multiplexed in situ competition assay between malignant and immune cells within tumors using a range of localized microdose metabolic perturbations. The approach and findings may be used to potentiate the effects of T cell stimulating immunotherapies on a tumor-specific or personalized basis through targeted enrichment or depletion of specific metabolites.

9.
J Pathol Inform ; 12: 34, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34760331

RESUMEN

BACKGROUND: Tumor heterogeneity is increasingly being recognized as a major source of variability in the histopathological assessment of drug responses. Quantitative analysis of immunohistochemistry (IHC) and immunofluorescence (IF) images using biomarkers that capture spatialpatterns of distinct tumor biology and drug concentration in tumors is of high interest to the field. METHODS: We have developed an image analysis pipeline to measure drug response using IF and IHC images along spatial gradients of local drug release from a tumor-implantable drug delivery microdevice. The pipeline utilizes a series of user-interactive python scripts and CellProfiler pipelines with custom modules to perform image and spatial analysis of regions of interest within whole-slide images. RESULTS: Worked examples demonstrate that intratumor measurements such as apoptosis, cell proliferation, and immune cell population density can be quantitated in a spatially and drug concentration-dependent manner, establishing in vivo profiles of pharmacodynamics and pharmacokinetics in tumors. CONCLUSIONS: Spatial image analysis of tumor response along gradients of local drug release is achievable in high throughput. The major advantage of this approach is the use of spatially aware annotation tools to correlate drug gradients with drug effects in tumors in vivo.

10.
Int J Mol Sci ; 22(21)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34769180

RESUMEN

Advances in the intratumor measurement of drug responses have included a pioneering biomedical microdevice for high throughput drug screening in vivo, which was further advanced by integrating a graded-index lens based two-dimensional fluorescence micro-endoscope to monitor tissue responses in situ across time. While the previous system provided a bulk measurement of both drug delivery and tissue response from a given region of the tumor, it was incapable of visualizing drug distribution and tissue responses in a three-dimensional (3D) way, thus missing the critical relationship between drug concentration and effect. Here we demonstrate a next-generation system that couples multiplexed intratumor drug release with continuous 3D spatial imaging of the tumor microenvironment via the integration of a miniaturized two-photon micro-endoscope. This enables optical sectioning within the live tissue microenvironment to effectively profile the entire tumor region adjacent to the microdevice across time. Using this novel microimaging-microdevice (MI-MD) system, we successfully demonstrated the four-dimensional imaging (3 spatial dimensions plus time) of local drug delivery in tissue phantom and tumors. Future studies include the use of the MI-MD system for monitoring of localized intra-tissue drug release and concurrent measurement of tissue responses in live organisms, with applications to study drug resistance due to nonuniform drug distribution in tumors, or immune cell responses to anti-cancer agents.


Asunto(s)
Sistemas de Liberación de Medicamentos/instrumentación , Neoplasias Experimentales/diagnóstico por imagen , Imagen Óptica/instrumentación , Animales , Línea Celular Tumoral , Pollos , Ratones , Fantasmas de Imagen
11.
Cancers (Basel) ; 13(4)2021 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-33562152

RESUMEN

By observing the activity of anti-cancer agents directly in tumors, there is potential to greatly expand our understanding of drug response and develop more personalized cancer treatments. Implantable microdevices (IMD) have been recently developed to deliver microdoses of chemotherapeutic agents locally into confined regions of live tumors; the tissue can be subsequently removed and analyzed to evaluate drug response. This method has the potential to rapidly screen multiple drugs, but requires surgical tissue removal and only evaluates drug response at a single timepoint when the tissue is excised. Here, we describe a "lab-in-a-tumor" implantable microdevice (LIT-IMD) platform to image cell-death drug response within a live tumor, without requiring surgical resection or tissue processing. The LIT-IMD is inserted into a live tumor and delivers multiple drug microdoses into spatially discrete locations. In parallel, it locally delivers microdose levels of a fluorescent cell-death assay, which diffuses into drug-exposed tissues and accumulates at sites of cell death. An integrated miniaturized fluorescence imaging probe images each region to evaluate drug-induced cell death. We demonstrate ability to evaluate multi-drug response over 8 h using murine tumor models and show correlation with gold-standard conventional fluorescence microscopy and histopathology. This is the first demonstration of a fully integrated platform for evaluating multiple chemotherapy responses in situ. This approach could enable a more complete understanding of drug activity in live tumors, and could expand the utility of drug-response measurements to a wide range of settings where surgery is not feasible.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...