Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
bioRxiv ; 2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38826396

RESUMEN

Recent data highlight genomic events driving antigen escape as a recurring cause of chimeric antigen receptor T-cell (CAR-T) and bispecific T-cell engager (TCE) resistance in multiple myeloma (MM). Yet, it remains unclear if these events, leading to clonal dominance at progression, result from acquisition under treatment selection or selection of pre-existing undetectable clones. This differentiation gains importance as these immunotherapies progress to earlier lines of treatment, prompting the need for innovative diagnostic testing to detect these events early on. By reconstructing phylogenetic trees and exploring chemotherapy mutational signatures as temporal barcodes in 11 relapsed refractory MM patients with available whole genome sequencing data before and after CART/TCE treatment, we demonstrated that somatic antigen escape mechanisms for BCMA- and GPRC5D-targeting therapies are acquired post-diagnosis, likely during CART/TCE treatment. Longitudinal tracking of these mutations using digital PCR in 4 patients consistently showed that genomic events promoting antigen escape were not detectable during the initial months of therapy but began to emerge nearly 1 year post therapy initiation. This finding reduces the necessity for a diagnostic panel to identify these events before CART/TCE. Instead, it underscores the importance of surveillance and identifying patients at higher risk of acquiring these events.

3.
EMBO Mol Med ; 16(1): 40-63, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38177528

RESUMEN

Despite intensive clinical and scientific efforts, the mortality rate of sepsis remains high due to the lack of precise biomarkers for patient stratification and therapeutic guidance. Secreted human tryptophanyl-tRNA synthetase 1 (WARS1), an endogenous ligand for Toll-like receptor (TLR) 2 and TLR4 against infection, activates the genes that signify the hyperinflammatory sepsis phenotype. High plasma WARS1 levels stratified the early death of critically ill patients with sepsis, along with elevated levels of cytokines, chemokines, and lactate, as well as increased numbers of absolute neutrophils and monocytes, and higher Sequential Organ Failure Assessment (SOFA) scores. These symptoms were recapitulated in severely ill septic mice with hypercytokinemia. Further, injection of WARS1 into mildly septic mice worsened morbidity and mortality. We created an anti-human WARS1-neutralizing antibody that suppresses proinflammatory cytokine expression in marmosets with endotoxemia. Administration of this antibody into severe septic mice attenuated cytokine storm, organ failure, and early mortality. With antibiotics, the antibody almost completely prevented fatalities. These data imply that blood-circulating WARS1-guided anti-WARS1 therapy may provide a novel theranostic strategy for life-threatening systemic hyperinflammatory sepsis.


Asunto(s)
Sepsis , Triptófano-ARNt Ligasa , Humanos , Animales , Ratones , Triptófano-ARNt Ligasa/genética , Medicina de Precisión , Citocinas/metabolismo , Quimiocinas
4.
Blood ; 143(1): 42-56, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-37729611

RESUMEN

ABSTRACT: The translocation t(11;14) occurs in 20% of patients with multiple myeloma (MM) and results in the upregulation of CCND1. Nearly two-thirds of t(11;14) MM cells are BCL2 primed and highly responsive to the oral BCL2 inhibitor venetoclax. Although it is evident that this unique sensitivity to venetoclax depends on the Bcl-2 homology domain 3- proapoptotic protein priming of BCL2, the biology underlying t(11;14) MM dependency on BCL2 is poorly defined. Importantly, the epigenetic regulation of t(11;14) transcriptomes and its impact on gene regulation and clinical response to venetoclax remain elusive. In this study, by integrating assay for transposase-accessible chromatin by sequencing (ATAC-seq) and RNA-seq at the single-cell level in primary MM samples, we have defined the epigenetic regulome and transcriptome associated with t(11;14) MM. A B-cell-like epigenetic signature was enriched in t(11;14) MM, confirming its phylogeny link to B-cell rather than plasma cell biology. Of note, a loss of a B-cell-like epigenetic signature with a gain of canonical plasma cell transcription factors was observed at the time of resistance to venetoclax. In addition, MCL1 and BCL2L1 copy number gains and structural rearrangements were linked to venetoclax resistance in patients with t(11;14) MM. To date, this is the first study in which both single-cell (sc) ATAC-seq and scRNA-seq analysis are integrated into primary MM cells to obtain a deeper resolution of the epigenetic regulome and transcriptome associated with t(11;14) MM biology and venetoclax resistance.


Asunto(s)
Antineoplásicos , Mieloma Múltiple , Humanos , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Mieloma Múltiple/tratamiento farmacológico , Epigénesis Genética , Antineoplásicos/uso terapéutico , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico
5.
Blood Cancer Discov ; 5(1): 56-73, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-37934799

RESUMEN

Immunomodulatory drugs (IMiD) are a backbone therapy for multiple myeloma (MM). Despite their efficacy, most patients develop resistance, and the mechanisms are not fully defined. Here, we show that IMiD responses are directed by IMiD-dependent degradation of IKZF1 and IKZF3 that bind to enhancers necessary to sustain the expression of MYC and other myeloma oncogenes. IMiD treatment universally depleted chromatin-bound IKZF1, but eviction of P300 and BRD4 coactivators only occurred in IMiD-sensitive cells. IKZF1-bound enhancers overlapped other transcription factor binding motifs, including ETV4. Chromatin immunoprecipitation sequencing showed that ETV4 bound to the same enhancers as IKZF1, and ETV4 CRISPR/Cas9-mediated ablation resulted in sensitization of IMiD-resistant MM. ETV4 expression is associated with IMiD resistance in cell lines, poor prognosis in patients, and is upregulated at relapse. These data indicate that ETV4 alleviates IKZF1 and IKZF3 dependency in MM by maintaining oncogenic enhancer activity and identify transcriptional plasticity as a previously unrecognized mechanism of IMiD resistance. SIGNIFICANCE: We show that IKZF1-bound enhancers are critical for IMiD efficacy and that the factor ETV4 can bind the same enhancers and substitute for IKZF1 and mediate IMiD resistance by maintaining MYC and other oncogenes. These data implicate transcription factor redundancy as a previously unrecognized mode of IMiD resistance in MM. See related article by Welsh, Barwick, et al., p. 34. See related commentary by Yun and Cleveland, p. 5. This article is featured in Selected Articles from This Issue, p. 4.


Asunto(s)
Mieloma Múltiple , Humanos , Proteínas que Contienen Bromodominio , Proteínas de Ciclo Celular , Agentes Inmunomoduladores , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Recurrencia Local de Neoplasia , Proteínas Nucleares , Proteínas Proto-Oncogénicas c-ets/genética , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas/fisiología , Ubiquitina-Proteína Ligasas/uso terapéutico
6.
eNeuro ; 10(11)2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37914408

RESUMEN

Animals exhibit context-dependent behavioral decisions that are mediated by specific motor circuits. In social species these decisions are often influenced by social status. Although social status-dependent neural plasticity of motor circuits has been investigated in vertebrates, little is known of how cellular plasticity translates into differences in motor activity. Here, we used zebrafish (Danio rerio) as a model organism to examine how social dominance influences the activation of swimming and the Mauthner-mediated startle escape behaviors. We show that the status-dependent shift in behavior patterns whereby dominants increase swimming and reduce sensitivity of startle escape while subordinates reduce their swimming and increase startle sensitivity is regulated by the synergistic interactions of dopaminergic, glycinergic, and GABAergic inputs to shift the balance of activation of the underlying motor circuits. This shift is driven by socially induced differences in expression of dopaminergic receptor type 1b (Drd1b) on glycinergic neurons and dopamine (DA) reuptake transporter (DAT). Second, we show that GABAergic input onto glycinergic neurons is strengthened in subordinates compared with dominants. Complementary neurocomputational modeling of the empirical results show that drd1b functions as molecular regulator to facilitate the shift between excitatory and inhibitory pathways. The results illustrate how reconfiguration in network dynamics serves as an adaptive strategy to cope with changes in social environment and are likely conserved and applicable to other social species.


Asunto(s)
Neuronas , Pez Cebra , Animales , Neuronas/fisiología , Predominio Social
7.
Nat Med ; 29(9): 2295-2306, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37653344

RESUMEN

B cell maturation antigen (BCMA) target loss is considered to be a rare event that mediates multiple myeloma (MM) resistance to anti-BCMA chimeric antigen receptor T cell (CAR T) or bispecific T cell engager (TCE) therapies. Emerging data report that downregulation of G-protein-coupled receptor family C group 5 member D (GPRC5D) protein often occurs at relapse after anti-GPRC5D CAR T therapy. To examine the tumor-intrinsic factors that promote MM antigen escape, we performed combined bulk and single-cell whole-genome sequencing and copy number variation analysis of 30 patients treated with anti-BCMA and/or anti-GPRC5D CAR T/TCE therapy. In two cases, MM relapse post-TCE/CAR T therapy was driven by BCMA-negative clones harboring focal biallelic deletions at the TNFRSF17 locus at relapse or by selective expansion of pre-existing subclones with biallelic TNFRSF17 loss. In another five cases of relapse, newly detected, nontruncating, missense mutations or in-frame deletions in the extracellular domain of BCMA negated the efficacies of anti-BCMA TCE therapies, despite detectable surface BCMA protein expression. In the present study, we also report four cases of MM relapse with biallelic mutations of GPRC5D after anti-GPRC5D TCE therapy, including two cases with convergent evolution where multiple subclones lost GPRC5D through somatic events. Immunoselection of BCMA- or GPRC5D-negative or mutant clones is an important tumor-intrinsic driver of relapse post-targeted therapies. Mutational events on BCMA confer distinct sensitivities toward different anti-BCMA therapies, underscoring the importance of considering the tumor antigen landscape for optimal design and selection of targeted immunotherapies in MM.


Asunto(s)
Mieloma Múltiple , Receptores Quiméricos de Antígenos , Humanos , Mieloma Múltiple/genética , Mieloma Múltiple/terapia , Deriva y Cambio Antigénico , Variaciones en el Número de Copia de ADN , Recurrencia Local de Neoplasia , Inmunoterapia , Anticuerpos , Proteínas de la Membrana
8.
Cancer Cell ; 41(4): 711-725.e6, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-36898378

RESUMEN

Bispecific T cell engagers (TCEs) have shown promise in the treatment of various cancers, but the immunological mechanism and molecular determinants of primary and acquired resistance to TCEs remain poorly understood. Here, we identify conserved behaviors of bone marrow-residing T cells in multiple myeloma patients undergoing BCMAxCD3 TCE therapy. We show that the immune repertoire reacts to TCE therapy with cell state-dependent clonal expansion and find evidence supporting the coupling of tumor recognition via major histocompatibility complex class I (MHC class I), exhaustion, and clinical response. We find the abundance of exhausted-like CD8+ T cell clones to be associated with clinical response failure, and we describe loss of target epitope and MHC class I as tumor-intrinsic adaptations to TCEs. These findings advance our understanding of the in vivo mechanism of TCE treatment in humans and provide the rationale for predictive immune-monitoring and conditioning of the immune repertoire to guide future immunotherapy in hematological malignancies.


Asunto(s)
Anticuerpos Biespecíficos , Mieloma Múltiple , Humanos , Mieloma Múltiple/tratamiento farmacológico , Linfocitos T CD8-positivos , Inmunoterapia , Células Clonales/patología , Anticuerpos Biespecíficos/uso terapéutico
9.
Aquat Toxicol ; 250: 106247, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35917677

RESUMEN

Aquatic toxicity posed by the complex mixture of biodegradation metabolites and related oxygen-containing organic compounds (OCOCs) in groundwater at typical petroleum release sites is of concern to regulatory agencies; several are using results from laboratory studies in older literature that are not appropriate analogs for risk management. Recent field studies from typical sites and natural groundwater should be utilized. In this study, OCOCs downgradient of the biodegrading crude oil release at the USGS Bemidji site were tested for freshwater aquatic toxicity using unaltered whole groundwater samples. This type of testing is optimal because the entire mixture of OCOCs present is tested directly and assessment is not affected by analytical limitations. Ceriodaphnia dubia and Pimephales promelas were tested for toxicity using USEPA Methods 1002 and 1000, which estimate chronic toxicity. OCOCs in representative samples up to the maximum concentration tested of 1710 ug/L Total Petroleum Hydrocarbons (TPH) (nC10 to nC40; without silica gel cleanup) did not result in effects relative to the lab control for C. dubia survival, or for P. promelas survival or growth; and did not result in effects above background for C. dubia reproduction. This is consistent with findings using the same testing methods and species on samples from 14 biodegrading fuel release sites: OCOCs did not cause increased toxicity relative to background at a maximum tested concentration of 1800 ug/L TPH (nC10 to nC28). Based on their toxicity testing using the same species and USEPA methods on groundwater from a biodegrading diesel release site, Washington Department of Ecology recently set a freshwater screening level for OCOCs at 3000 ug/L TPH ("Weathered DRO"). These studies indicate that, in the absence of dissolved hydrocarbons, OCOCs in groundwater from typical biodegrading fuel or crude oil releases are not toxic to C. dubia or P. promelas at typical concentrations.


Asunto(s)
Agua Subterránea , Petróleo , Contaminantes Químicos del Agua , Animales , Biodegradación Ambiental , Agua Dulce , Agua Subterránea/química , Hidrocarburos , Compuestos Orgánicos , Petróleo/toxicidad , Gestión de Riesgos , Contaminantes Químicos del Agua/toxicidad
10.
Int J Mol Sci ; 23(16)2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36012405

RESUMEN

Liquid biopsy has been emerging for early screening and treatment monitoring at each cancer stage. However, the current blood-based diagnostic tools in breast cancer have not been sufficient to understand patient-derived molecular features of aggressive tumors individually. Herein, we aimed to develop a blood test for the early detection of breast cancer with cost-effective and high-throughput considerations in order to combat the challenges associated with precision oncology using mRNA-based tests. We prospectively evaluated 719 blood samples from 404 breast cancer patients and 315 healthy controls, and identified 10 mRNA transcripts whose expression is increased in the blood of breast cancer patients relative to healthy controls. Modeling of the tumor-associated circulating transcripts (TACTs) is performed by means of four different machine learning techniques (artificial neural network (ANN), decision tree (DT), logistic regression (LR), and support vector machine (SVM)). The ANN model had superior sensitivity (90.2%), specificity (80.0%), and accuracy (85.7%) compared with the other three models. Relative to the value of 90.2% achieved using the TACT assay on our test set, the sensitivity values of other conventional assays (mammogram, CEA, and CA 15-3) were comparable or much lower, at 89%, 7%, and 5%, respectively. The sensitivity, specificity, and accuracy of TACTs were appreciably consistent across the different breast cancer stages, suggesting the potential of the TACTs assay as an early diagnosis and prediction of poor outcomes. Our study potentially paves the way for a simple and accurate diagnostic and prognostic tool for liquid biopsy.


Asunto(s)
Neoplasias de la Mama , Detección Precoz del Cáncer , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Detección Precoz del Cáncer/métodos , Femenino , Pruebas Hematológicas , Humanos , Medicina de Precisión , ARN Mensajero/genética , Sensibilidad y Especificidad
11.
Cancer Sci ; 113(6): 2097-2108, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35325509

RESUMEN

MicroRNAs are reported as promising biomarkers for the diagnosis and treatment of breast cancer. miR-1260b is identified as a tumor-associated noncoding microRNA in other cancers, although the role of miR-1260b and its clinical relevance in breast cancer remain unclear. In this study, miR-1260b as a potential prognostic biomarker was observed by univariate and multivariate Cox regression analyses in 102 breast tumor tissues. The tumorigenic role of miR-1260b in terms of proliferation, apoptosis, and migration of breast cancer cells was investigated using gain- and loss-of-function assays in vitro. Additionally, the potential early diagnosis and treatment monitoring marker of miR-1260b was validated in 129 plasma samples. We found that high miR-1260b expression was markedly associated with bulky tumor size, advanced stage, and lymph node invasion. Particularly, the high-miR-1260b-expression group showed shorter overall survival than the low-miR-1260b-expression group. The inhibition of oncogenic miR-1260b induced apoptosis and decreased migration and invasion of MDA-MB-231 cells. CASP8 was revealed as a direct target gene of miR-1260b, which is closely related to apoptosis. Furthermore, miR-1260b expression levels in plasma were significantly higher in patients with breast cancer than in healthy controls. The patients who tested positive for miR-1260b showed 16.3- and 18.2-fold higher risks in the early stage and locally advanced stage, respectively, compared with healthy controls, and the risk was decreased 6.2-fold after neoadjuvant chemotherapy. Taken together, miR-1260b may be a potential novel diagnostic, prognostic, and therapeutic target in breast cancer.


Asunto(s)
Neoplasias de la Mama , Caspasa 8 , MicroARNs , Apoptosis/genética , Biomarcadores de Tumor/genética , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Carcinogénesis/genética , Caspasa 8/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , Pronóstico
12.
Rheumatol Ther ; 9(2): 649-661, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35184268

RESUMEN

INTRODUCTION: A phase IV clinical trial confirmed the safety and efficacy of repository corticotropin injection (RCI, Acthar® Gel) in patients with refractory rheumatoid arthritis (RA) that was nonresponsive to standard-of-care therapies. The objective of this post hoc analysis was to identify baseline demographics and clinical characteristics that may be predictors of response to RCI. METHODS: The phase IV trial was a two-part, randomized, placebo-controlled withdrawal study. Post hoc analysis was conducted with the open-label portion of the trial data, in which all 258 subjects received RCI (80 U) twice weekly for 12 weeks. Responders were subjects who achieved low disease activity (LDA) by a Disease Activity Score with 28-joint count and erythrocyte sedimentation rate (DAS28-ESR) of < 3.2 at week 12. Responders were compared with nonresponders by assessing the proportion of subjects in each group for demographics and clinical characteristics, including weight, disease duration, medical history including osteoarthritis and unrelated joint conditions, hemoglobin A1c, C-reactive protein, ESR, DAS28-ESR, Clinical Disease Activity Index (CDAI), depression, anxiety, tender joint count (TJC), and swollen joint count (SJC). Bivariate analysis followed by multiple logistic regression analysis were conducted to identify significant baseline predictors for the outcome of achieving LDA by week 12. RESULTS: Bivariate analysis showed that RCI responders had significantly lower baseline TJC (p = 0.0310), SJC (p = 0.0018), ESR (p = 0.0487), and CDAI (p = 0.0112) and shorter RA disease duration (p = 0.0446). Subjects were less likely to achieve LDA if they had osteoarthritis (p < 0.0001), other joint-related conditions unrelated to RA (p < 0.0001), anemia (p = 0.0132), depression (p = 0.0006), or prior or concomitant use of targeted-synthetic or biologic disease-modifying antirheumatic drugs (p < 0.0001). Multiple logistic regression analysis revealed that, of the above, only ongoing osteoarthritis (p = 0.0272) or other joint-related conditions (p = 0.0193) were significant negative predictors of RCI response. CONCLUSIONS: These results identify specific patient characteristics that may be considered predictors of positive or negative clinical response to RCI.

13.
Soc Neurosci ; 17(1): 37-57, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35060435

RESUMEN

The current study explored the judgment of communicative appropriateness while processing a dialogue between two individuals. All stimuli were presented as audio-visual as well as audio-only vignettes and 24 young adults reported their social impression (appropriateness) of literal, blunt, sarcastic, and teasing statements. On average, teasing statements were rated as more appropriate when processing audio-visual statements compared to the audio-only version of a stimuli, while sarcastic statements were judged as less appropriate with additional visual information. These results indicate a rejection of the Tinge Hypothesis for audio-visual vignettes while confirming it for the reduced, audio-only counterparts. We also analyzed time-frequency EEG data of four frequency bands that have been related to language processing: alpha, beta, theta and low gamma. We found desynchronization in the alpha band literal versus nonliteral items, confirming the assumption that the alpha band reflects stimulus complexity. The analysis also revealed a power increase in the theta, beta and low gamma band, especially when comparing blunt and nonliteral statements in the audio-only condition. The time-frequency results corroborate the prominent role of the alpha and theta bands in language processing and offer new insights into the neural correlates of communicative appropriateness and social aspects of speech perception.


Asunto(s)
Lenguaje , Percepción del Habla , Percepción Auditiva , Comunicación , Electroencefalografía/métodos , Humanos , Juicio , Percepción Social , Percepción Visual , Adulto Joven
14.
Rheumatol Ther ; 9(2): 435-446, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34919213

RESUMEN

PURPOSE: Approximately 6% of patients with rheumatoid arthritis (RA) in the USA have refractory disease that is resistant to standard-of-care therapies. A recent phase IV clinical trial affirmed the safety and efficacy of repository corticotropin injection (RCI; Acthar® Gel) for refractory RA. This post hoc analysis of the clinical trial data assessed whether changes in clinical measures correlated with patient-reported outcome (PRO) improvements. METHODS: Data were assessed from the trial's open-label period when patients received RCI (80 U) twice weekly for 12 weeks. Clinical assessments included hemoglobin A1c, C-reactive protein, erythrocyte sedimentation rate (ESR), total joint count (TJC), swollen joint count (SJC), Disease Activity Score with 28 joint count and ESR (DAS28-ESR), and Clinical Disease Activity Index (CDAI). PROs included pain (Visual Analog Scale), fatigue (Functional Assessment of Chronic Illness Therapy-Fatigue [FACIT-F]), disability (Health Assessment Questionnaire-Disability Index [HAQ-DI]), and activity impairment (Work Productivity and Activity Impairment [WPAI] questionnaire). Patients grouped by minimal clinically important difference (MCID) improvement vs no improvement in PROs were compared with clinical measures at week 12. Correlations were determined by multivariable linear regression analysis and standardized coefficient estimates. RESULTS: RCI responders, defined as patients with DAS28-ESR < 3.2 at week 12, reported significantly greater PRO improvements for pain, disability, fatigue, activity impairment, current work impairment, and overall work impairment than nonresponders. Patients with MCID improvements in all PROs showed significantly greater decreases in mean values for TJC, DAS28-ESR, and CDAI, whereas those with pain, fatigue, and disability improvements had significantly greater SJC and ESR reductions. Multivariable linear regression analysis determined that improvement from baseline in all PROs correlated with significant decreases in TJC, DAS28-ESR, and CDAI. ESR reduction significantly correlated with improvements in pain and disability, but not fatigue or WPAI. CONCLUSIONS: These results confirm that clinical responses to RCI were directly correlated with patient perception of improvement.

15.
Chaos ; 31(11): 113121, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34881610

RESUMEN

The subthalamic nucleus (STN) has an important role in the pathophysiology of the basal ganglia in Parkinson's disease. The ability of STN cells to generate bursting rhythms under either transient or sustained hyperpolarization may underlie the excessively synchronous beta rhythms observed in Parkinson's disease. In this study, we developed a conductance-based single compartment model of an STN neuron, which is able to generate characteristic activity patterns observed in experiments including hyperpolarization-induced bursts and post-inhibitory rebound bursts. This study focused on the role of three currents in rhythm generation: T-type calcium (CaT) current, L-type calcium (CaL) current, and hyperpolarization-activated cyclic nucleotide-gated (HCN) current. To investigate the effects of these currents in rhythm generation, we performed a bifurcation analysis using slow variables in these currents. Bifurcation analysis showed that the HCN current promotes single-spike activity patterns rather than bursting in agreement with experimental results. It also showed that the CaT current is necessary for characteristic bursting activity patterns. In particular, the CaT current enables STN neurons to generate these activity patterns under hyperpolarizing stimuli. The CaL current enriches and reinforces these characteristic activity patterns. In hyperpolarization-induced bursts or post-inhibitory rebound bursts, the CaL current allows STN neurons to generate long bursting patterns. Thus, the bifurcation analysis explained the synergistic interaction of the CaT and CaL currents, which enables STN neurons to respond to hyperpolarizing stimuli in a salient way. The results of this study implicate the importance of CaT and CaL currents in the pathophysiology of the basal ganglia in Parkinson's disease.


Asunto(s)
Núcleo Subtalámico , Ganglios Basales , Ritmo beta , Modelos Teóricos , Neuronas
16.
J Contam Hydrol ; 242: 103855, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34265523

RESUMEN

The concentrations of oxygen-containing organic compounds (OCOC), measured as dissolved organic carbon (DOC), in groundwater exceeds those of dissolved hydrocarbons, measured as total petroleum hydrocarbons (TPH), at a crude oil release site. Orbitrap mass spectrometry was used to characterize OCOC in samples of the oil, water from upgradient of the release, source area, and downgradient wells, and a local lake. Chemical characterization factors included carbon number, oxygen number, formulae similarity, double bond equivalents (DBE) and radiocarbon dating. Oil samples were dominated by formulae with less than 30 carbons, four or fewer oxygens, and a DBE of less than four. In water samples, formulae were identified with more than 30 carbons, more than 10 oxygens, and a DBE exceeding 30. These characteristics are consistent with DOC found in unimpacted water. Between 65% and 92% of the formulae found in samples collected within the elevated OCOC plume were also found in the upgradient or surface water samples. Evidence suggests that many of the OCOC are not petroleum degradation intermediates, but microbial products generated as a result of de novo synthesis by organisms growing on carbon supplied by the oil. Implications of these results for understanding the fate and managing the risk of hydrocarbons in the subsurface are discussed.


Asunto(s)
Agua Subterránea , Petróleo , Contaminantes Químicos del Agua , Hidrocarburos , Solventes , Contaminantes Químicos del Agua/análisis
18.
Front Behav Neurosci ; 15: 668589, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34045945

RESUMEN

Social status-dependent modulation of neural circuits has been investigated extensively in vertebrate and invertebrate systems. However, the effects of social status on neuromodulatory systems that drive motor activity are poorly understood. Zebrafish form a stable social relationship that consists of socially dominant and subordinate animals. The locomotor behavior patterns differ according to their social ranks. The sensitivity of the Mauthner startle escape response in subordinates increases compared to dominants while dominants increase their swimming frequency compared to subordinates. Here, we investigated the role of the endocannabinoid system (ECS) in mediating these differences in motor activities. We show that brain gene expression of key ECS protein pathways are socially regulated. Diacylglycerol lipase (DAGL) expression significantly increased in dominants and significantly decreased in subordinates relative to controls. Moreover, brain gene expression of the cannabinoid 1 receptor (CB1R) was significantly increased in subordinates relative to controls. Secondly, increasing ECS activity with JZL184 reversed swimming activity patterns in dominant and subordinate animals. JZL184 did not affect the sensitivity of the startle escape response in dominants while it was significantly reduced in subordinates. Thirdly, blockage of CB1R function with AM-251 had no effect on dominants startle escape response sensitivity, but startle sensitivity was significantly reduced in subordinates. Additionally, AM-251 did not affect swimming activities in either social phenotypes. Fourthly, we demonstrate that the effects of ECS modulation of the startle escape circuit is mediated via the dopaminergic system specifically via the dopamine D1 receptor. Finally, our empirical results complemented with neurocomputational modeling suggest that social status influences the ECS to regulate the balance in synaptic strength between excitatory and inhibitory inputs to control the excitability of motor behaviors. Collectively, this study provides new insights of how social factors impact nervous system function to reconfigure the synergistic interactions of neuromodulatory pathways to optimize motor output.

19.
Environ Toxicol Chem ; 39(8): 1634-1645, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32418246

RESUMEN

The potential toxicity to human and aquatic receptors of petroleum fuel biodegradation metabolites (oxygen-containing organic compounds [OCOCs]) in groundwater has been investigated as part of a multi-year research program. Whole mixtures collected from locations upgradient and downgradient of multiple fuel release sites were tested using: 1) in vitro screening assays for human genotoxicity (the gamma-H2AX assay) and estrogenic effects (estrogen receptor transcriptional activation assay), and 2) chronic aquatic toxicity tests in 3 species (Ceriodaphnia dubia, Raphidocelis subcapitata, and Pimephales promelas). In vitro screening assay results demonstrated that the mixtures did not cause genotoxic or estrogenic effects. No OCOC-related aquatic toxicity was observed and when aquatic toxicity did occur, upgradient samples typically had the same response as samples downgradient of the release, indicating that background water quality was impacting the results. This information provides additional support for previous work that focused on the individual compounds and, taken together, indicates that OCOCs from petroleum degradation at fuel release sites are unlikely to cause toxicity to human or freshwater receptors at the concentrations present. Environ Toxicol Chem 2020;39:1634-1645. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Agua Subterránea/química , Petróleo/análisis , Pruebas de Toxicidad Crónica , Contaminantes Químicos del Agua/toxicidad , Animales , Biodegradación Ambiental/efectos de los fármacos , Cladóceros/efectos de los fármacos , Cladóceros/crecimiento & desarrollo , Cyprinidae/fisiología , Ecotoxicología , Agua Dulce , Humanos , Salinidad , Calidad del Agua
20.
J Theor Biol ; 490: 110159, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-31954109

RESUMEN

The mechanisms and properties of synchronization of oscillating ecological populations attract attention because it is a fairly common phenomenon and because spatial synchrony may elevate a risk of extinction and may lead to other environmental impacts. Conditions for stable synchronization in a system of linearly coupled predator-prey oscillators have been considered in the past. However, the spatial dispersal coupling may be relatively weak and may not necessarily lead to a stable, complete synchrony. If the coupling between oscillators is too weak to induce a stable synchrony, oscillators may be engaged into intermittent synchrony, when episodes of synchronized dynamics are interspersed with the episodes of desynchronized dynamics. In the present study we consider the temporal patterning of this kind of intermittent synchronized dynamics in a system of two dispersal-coupled Rosenzweig-MacArthur predator-prey oscillators. We consider the properties of the distributions of durations of desynchronized intervals and their dependence on the model parameters. We show that the temporal patterning of synchronous dynamics (an ecological network phenomenon) may depend on the properties of individual predator-prey patch (individual oscillator) and may vary independently of the strength of dispersal. We also show that if the dynamics of predator is slow relative to the dynamics of the prey (a situation that may promote brief but large outbreaks), dispersal-coupled predator-prey oscillating populations exhibit numerous short desynchronizations (as opposed to few long desynchronizations) and may require weaker dispersal in order to reach strong synchrony.


Asunto(s)
Ecosistema , Conducta Predatoria , Animales , Modelos Biológicos , Dinámica Poblacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...