Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39265156

RESUMEN

Significant challenges in ensuring long-term stability, addressing environmental safety issues, and improving efficiency have hindered the commercialization of inverted Pb-based halide perovskite solar cells (PeSCs). One reasonable approach to addressing these issues is to place an effective buffer layer between the perovskite active layer and the electrode. In this study, we demonstrate the use of crown ether, di-tert-butyl dibenzo-18-crown-6, as a single buffer layer to improve the efficiency, long-term stability, and environmental safety of PeSCs for the first time. The crown ether buffer layer suppressed Ag diffusion from the Ag metal electrodes, thereby improving the performance and lifetime of the device. In addition, it effectively captures Pb ions that may leak into the environment during the whole lifetime of devices, thereby enhancing the environmental safety of PeSCs. Furthermore, PeSCs incorporating crown ethers as buffer layers demonstrated enhanced stability in a nitrogen atmosphere and achieved a high power conversion efficiency of 22.8%. Consequently, this crown ether buffer layer offers an effective and straightforward strategy capable of achieving efficient, stable, and environmentally safe PeSCs.

2.
Small ; 20(23): e2308847, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38174599

RESUMEN

The use of a small organic molecular passivator is proven to be a successful strategy for producing higher-performing quasi-2D perovskite light-emitting diodes (PeLEDs). The small organic molecule can passivate defects on the grain surround and surface of perovskite crystal structures, preventing nonradiative recombination and charge trapping. In this study, a new small organic additive called 2, 8-dibromodibenzofuran (diBDF) is reported and examines its effectiveness as a passivating agent in high-performance green quasi-2D PeLEDs. The oxygen atom in diBDF, acting as a Lewis base, forms coordination bonds with uncoordinated Pb2+, so enhancing the performance of the device. In addition, the inclusion of diBDF in the quasi-2D perovskite results in a decrease in the abundance of low-n phases, hence facilitating efficient carrier mobility. Consequently, PeLED devices with high efficiency are successfully produced, exhibiting an external quantum efficiency of 19.9% at the emission wavelength of 517 nm and a peak current efficiency of 65.0 cd A-1.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA