Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Mol Gastroenterol Hepatol ; 17(2): 279-291, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37844795

RESUMEN

BACKGROUND & AIMS: Nonalcoholic fatty liver disease (NAFLD), and its more severe form, nonalcoholic steatohepatitis (NASH), is the leading cause for liver failure and liver cancer. Although the etiology is likely multifactorial, genes involved in regulating lipid metabolism are enriched in human NAFLD genome-wide association studies (GWAS), pointing to dysregulated lipid metabolism as a major pathogenic factor. Glycerol-3-phosphate acyltransferase 1 (GPAT1), encoded by GPAM, converts acyl-CoAs and glycerol-3-phosphate into lysophosphatidic acid and has been shown to regulate lipid accumulation in the liver. However, its role in mediating the progression from NAFLD to NASH has not been explored. METHODS: GPAT1-deficient mice were generated and challenged with diets inducing hepatic steatosis and NASH. Effects of GPAT1 deficiency on lipid and systemic metabolic end points were evaluated. RESULTS: Ablating GPAT1 globally or specifically in mouse hepatocytes reduced hepatic steatosis in the context of diet-induced or genetic obesity. Interestingly, blunting of progression from NAFLD to NASH in global GPAT1 knockout (KO) mice was model dependent. GPAT1 KO mice were protected from choline deficient, amino acid defined high-fat diet-induced NASH development, but not from the high fat, high carbohydrate, and high cholesterol diet-induced NASH. CONCLUSIONS: Our preclinical data support the notion that lipid metabolism pathways regulated by GPAT1 in hepatocytes play an essential role in NASH progression, albeit in a model-dependent manner.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Humanos , Enfermedad del Hígado Graso no Alcohólico/patología , Estudio de Asociación del Genoma Completo , Glicerol , Dieta Alta en Grasa/efectos adversos , Ratones Noqueados , Fosfatos , Lípidos
2.
Am J Physiol Heart Circ Physiol ; 326(2): H357-H369, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38038720

RESUMEN

Friedreich's ataxia (FA) is an autosomal recessive disorder caused by a deficiency in frataxin (FXN), a mitochondrial protein that plays a critical role in the synthesis of iron-sulfur clusters (Fe-S), vital inorganic cofactors necessary for numerous cellular processes. FA is characterized by progressive ataxia and hypertrophic cardiomyopathy, with cardiac dysfunction as the most common cause of mortality in patients. Commonly used cardiac-specific mouse models of FA use the muscle creatine kinase (MCK) promoter to express Cre recombinase in cardiomyocytes and striated muscle cells in mice with one conditional Fxn allele and one floxed-out/null allele. These mice quickly develop cardiomyopathy that becomes fatal by 9-11 wk of age. Here, we generated a cardiac-specific model with floxed Fxn allele homozygosity (MCK-Fxnflox/flox). MCK-Fxnflox/flox mice were phenotypically normal at 9 wk of age, despite no detectable FXN protein expression. Between 13 and 15 wk of age, these mice began to display progressive cardiomyopathy, including decreased ejection fraction and fractional shortening and increased left ventricular mass. MCK-Fxnflox/flox mice began to lose weight around 16 wk of age, characteristically associated with heart failure in other cardiac-specific FA models. By 18 wk of age, MCK-Fxnflox/flox mice displayed elevated markers of Fe-S deficiency, cardiac stress and injury, and cardiac fibrosis. This modified model reproduced important pathophysiological and biochemical features of FA over a longer timescale than previous cardiac-specific mouse models, offering a larger window for studying potential therapeutics.NEW & NOTEWORTHY Previous cardiac-specific frataxin knockout models exhibit rapid and fatal cardiomyopathy by 9 wk of age. This severe phenotype poses challenges for the design and execution of intervention studies. We introduce an alternative cardiac-specific model, MCK-Fxnflox/flox, with increased longevity and delayed onset of all major phenotypes. These phenotypes develop to the same severity as previous models. Thus, this new model provides the same cardiomyopathy-associated mortality with a larger window for potential studies.


Asunto(s)
Cardiomiopatías , Ataxia de Friedreich , Humanos , Ratones , Animales , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Alelos , Proteínas de Unión a Hierro/genética , Proteínas de Unión a Hierro/metabolismo , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Modelos Animales de Enfermedad , Frataxina , Miocitos Cardíacos/metabolismo
3.
Am J Hematol ; 98(12): 1838-1846, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37688507

RESUMEN

Sickle cell disease (SCD) is a severe, multisystemic hematological disorder that impacts nearly every major organ in adults. The current approved treatments for SCD directly target mutant hemoglobin or address downstream disease pathology. Several compounds targeting reduction of 2,3-DPG by activation of Pyruvate Kinase-R are currently being evaluated in SCD patients. In this study, we genetically engineered a mouse lacking 2,3-DPG on the Townes SCD mouse model background and evaluated the effects of 2,3-DPG loss on disease pathology. Animals lacking 2,3-DPG showed improvements in hematological markers and reductions in RBC sickling relative to native Townes mice, however, minimal difference in organ damage was observed in 2,3-DPG deficient mice compared to native Townes animals. When animals lacking 2,3-DPG were dosed with a compound designed to increase hemoglobin oxygen affinity, oxygen delivery related toxicity was observed.


Asunto(s)
Anemia de Células Falciformes , Adulto , Humanos , Ratones , Animales , 2,3-Difosfoglicerato , Anemia de Células Falciformes/genética , Hemoglobinas/análisis , Fenotipo , Oxígeno
4.
Toxicol Sci ; 194(1): 53-69, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37228089

RESUMEN

The degradation tag (dTAG) system for target protein degradation can remove proteins from biological systems without the drawbacks of some genetic methods, such as slow kinetics, lack of reversibility, low specificity, and the inability to titrate dosage. These drawbacks can make it difficult to compare toxicity resulting from genetic and pharmacological interventions, especially in vivo. Because the dTAG system has not been studied extensively in vivo, we explored the use of this system to study the physiological sequalae resulting from CDK2 or CDK5 degradation in adult mice. Mice with homozygous knock-in of the dTAG sequence onto CDK2 and CDK5 were born at Mendelian ratios despite decreased CDK2 or CDK5 protein levels in comparison with wild-type mice. In bone marrow cells and duodenum organoids derived from these mice, treatment with the dTAG degrader dTAG-13 resulted in rapid and robust protein degradation but caused no appreciable change in viability or the transcriptome. Repeated delivery of dTAG-13 in vivo for toxicity studies proved challenging; we explored multiple formulations in an effort to maximize degradation while minimizing formulation-related toxicity. Degradation of CDK2 or CDK5 in all organs except the brain, where dTAG-13 likely did not cross the blood brain barrier, only caused microscopic changes in the testis of CDK2dTAG mice. These findings were corroborated with conditional CDK2 knockout in adult mice. Our results suggest that the dTAG system can provide robust protein degradation in vivo and that loss of CDK2 or CDK5 in adult mice causes no previously unknown phenotypes.


Asunto(s)
Quinasa 5 Dependiente de la Ciclina , Proteínas , Masculino , Ratones , Animales , Quinasa 5 Dependiente de la Ciclina/genética , Quinasa 5 Dependiente de la Ciclina/metabolismo , Proteínas/metabolismo , Proteolisis
5.
Mol Cancer Ther ; 22(7): 891-900, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37186518

RESUMEN

KRAS is one of the most commonly mutated oncogenes in lung, colorectal, and pancreatic cancers. Recent clinical trials directly targeting KRAS G12C presented encouraging results for a large population of non-small cell lung cancer (NSCLC), but resistance to treatment is a concern. Continued exploration of new inhibitors and preclinical models is needed to address resistance mechanisms and improve duration of patient responses. To further enable the development of KRAS G12C inhibitors, we present a preclinical framework involving translational, non-invasive imaging modalities (CT and PET) and histopathology in a conventional xenograft model and a novel KRAS G12C knock-in mouse model of NSCLC. We utilized an in-house developed KRAS G12C inhibitor (Compound A) as a tool to demonstrate the value of this framework in studying in vivo pharmacokinetic/pharmacodynamic (PK/PD) relationship and anti-tumor efficacy. We characterized the Kras G12C-driven genetically engineered mouse model (GEMM) and identify tumor growth and signaling differences compared to its Kras G12D-driven counterpart. We also find that Compound A has comparable efficacy to sotorasib in the Kras G12C-driven lung tumors arising in the GEMM, but like observations in the clinic, some tumors inevitably progress on treatment. These findings establish a foundation for evaluating future KRAS G12C inhibitors that is not limited to xenograft studies and can be applied in a translationally relevant mouse model that mirrors human disease progression and resistance.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Ratones , Humanos , Xenoinjertos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Trasplante Heterólogo , Modelos Animales de Enfermedad , Mutación
6.
PLoS One ; 18(4): e0283806, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37014882

RESUMEN

Muscle wasting is one of the main characteristics of cachexia associated with cancer and other chronic diseases and is often exacerbated by antineoplastic agents. Increased oxidative stress is associated with muscle wasting, along with depletion of glutathione, the most abundant endogenous antioxidant. Therefore, boosting endogenous glutathione has been proposed as a therapeutic strategy to prevent muscle wasting. Here, we tested this hypothesis by inactivating CHAC1, an intracellular glutathione degradation enzyme. We found CHAC1 expression is increased under multiple muscle wasting conditions in animal models, including fasting, cancer cachexia, and chemotherapy. The elevation of muscle Chac1 expression is associated with reduced glutathione level. CHAC1 inhibition via CRSPR/Cas9 mediated knock-in of an enzyme inactivating mutation demonstrates a novel strategy to preserve muscle glutathione levels under wasting conditions but fails to prevent muscle wasting in mice. These results suggest that preserving intracellular glutathione level alone may not be sufficient to prevent cancer or chemotherapy induced muscle wasting.


Asunto(s)
Caquexia , Neoplasias , gamma-Glutamilciclotransferasa , Animales , Ratones , Caquexia/prevención & control , Caquexia/metabolismo , Glutatión/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/patología , Neoplasias/complicaciones , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , gamma-Glutamilciclotransferasa/metabolismo
7.
J Inherit Metab Dis ; 45(3): 481-492, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34918784

RESUMEN

Classic galactosemia (CG) is a rare disorder of autosomal recessive inheritance. It is caused predominantly by point mutations as well as deletions in the gene encoding the enzyme galactose-1-phosphate uridyltransferase (GALT). The majority of the more than 350 mutations identified in the GALT gene cause a significant reduction in GALT enzyme activity resulting in the toxic buildup of galactose metabolites that in turn is associated with cellular stress and injury. Consequently, developing a therapeutic strategy that reverses both the oxidative and ER stress in CG cells may be helpful in combating this disease. Recombinant adeno-associated virus (AAV)-mediated gene therapy to restore GALT activity offers the potential to address the unmet medical needs of galactosemia patients. Here, utilizing fibroblasts derived from CG patients we demonstrated that AAV-mediated augmentation of GALT protein and activity resulted in the prevention of ER and oxidative stress. We also demonstrate that these CG patient fibroblasts exhibit reduced CD109 and TGFßRII protein levels and that these effectors of cellular homeostasis could be restored following AAV-mediated expression of GALT. Finally, we show initial in vivo proof-of-concept restoration of galactose metabolism in a GALT knockout mouse model following treatment with AAV-GALT.


Asunto(s)
Galactosemias , UTP-Hexosa-1-Fosfato Uridililtransferasa , Animales , Fibroblastos/metabolismo , Galactosa/metabolismo , Galactosemias/genética , Galactosemias/terapia , Humanos , Ratones , Ratones Noqueados , UTP-Hexosa-1-Fosfato Uridililtransferasa/genética , UTP-Hexosa-1-Fosfato Uridililtransferasa/metabolismo
8.
Front Physiol ; 11: 531933, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33192541

RESUMEN

Development of the vertebrate head is a complex and dynamic process, which requires integration of all three germ layers and their derivatives. Of special importance are ectoderm-derived cells that form the cranial placodes, which then differentiate into the cranial ganglia and sensory organs. Critical to a fully functioning head, defects in cranial placode and sensory organ development can result in congenital craniofacial anomalies. In a forward genetic screen aimed at identifying novel regulators of craniofacial development, we discovered an embryonically lethal mouse mutant, snouty, which exhibits malformation of the facial prominences, cranial nerves and vasculature. The snouty mutation was mapped to a single nucleotide change in a ubiquitously expressed gene, Med23, which encodes a subunit of the global transcription co-factor complex, Mediator. Phenotypic analyses revealed that the craniofacial anomalies, particularly of the cranial ganglia, were caused by a failure in the proper specification of cranial placode neuronal precursors. Molecular analyses determined that defects in cranial placode neuronal differentiation in Med23 sn/sn mutants were associated with elevated WNT/ß-catenin signaling, which can be partially rescued through combined Lrp6 and Wise loss-of-function. Our work therefore reveals a surprisingly tissue specific role for the ubiquitously expressed mediator complex protein Med23 in placode differentiation during cranial ganglia development. This highlights the importance of coupling general transcription to the regulation of WNT signaling during embryogenesis.

9.
Elife ; 92020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33200983

RESUMEN

The lymphatic vasculature is involved in the pathogenesis of acute cardiac injuries, but little is known about its role in chronic cardiac dysfunction. Here, we demonstrate that angiotensin II infusion induced cardiac inflammation and fibrosis at 1 week and caused cardiac dysfunction and impaired lymphatic transport at 6 weeks in mice, while co-administration of VEGFCc156s improved these parameters. To identify novel mechanisms underlying this protection, RNA sequencing analysis in distinct cell populations revealed that VEGFCc156s specifically modulated angiotensin II-induced inflammatory responses in cardiac and peripheral lymphatic endothelial cells. Furthermore, telemetry studies showed that while angiotensin II increased blood pressure acutely in all animals, VEGFCc156s-treated animals displayed a delayed systemic reduction in blood pressure independent of alterations in angiotensin II-mediated aortic stiffness. Overall, these results demonstrate that VEGFCc156s had a multifaceted therapeutic effect to prevent angiotensin II-induced cardiac dysfunction by improving cardiac lymphatic function, alleviating fibrosis and inflammation, and ameliorating hypertension.


Asunto(s)
Células Endoteliales/metabolismo , Cardiopatías/metabolismo , Miocardio/metabolismo , Factor C de Crecimiento Endotelial Vascular/farmacología , Angiotensina II/toxicidad , Animales , Biomarcadores , Técnicas de Sustitución del Gen , Estudio de Asociación del Genoma Completo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Hipertensión/inducido químicamente , Masculino , Ratones , Ratones Endogámicos C57BL , Distribución Aleatoria , Análisis de Secuencia de ARN , Proteínas Supresoras de Tumor/metabolismo , Factor C de Crecimiento Endotelial Vascular/administración & dosificación
10.
JBMR Plus ; 3(8): e10205, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31485553

RESUMEN

FGF signaling plays a critical role in tooth development, and mutations in modulators of this pathway produce a number of striking phenotypes. However, many aspects of the role of the FGF pathway in regulating the morphological features and the mineral quality of the dentition remain unknown. Here, we used transgenic mice overexpressing the FGF negative feedback regulator Sprouty4 under the epithelial keratin 14 promoter (K14-Spry4) to achieve downregulation of signaling in the epithelium. This led to highly penetrant defects affecting both cusp morphology and the enamel layer. We characterized the phenotype of erupted molars, identified a developmental delay in K14-Spry4 transgenic embryos, and linked this with changes in the tooth developmental sequence. These data further delineate the role of FGF signaling in the development of the dentition and implicate the pathway in the regulation of tooth mineralization. © 2019 The Authors. JBMR Plus is published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.

11.
Cell Stem Cell ; 22(5): 740-754.e7, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29727682

RESUMEN

Hox genes modulate the properties of hematopoietic stem cells (HSCs) and reacquired Hox expression in progenitors contributes to leukemogenesis. Here, our transcriptome and DNA methylome analyses revealed that Hoxb cluster and retinoid signaling genes are predominantly enriched in LT-HSCs, and this coordinate regulation of Hoxb expression is mediated by a retinoid-dependent cis-regulatory element, distal element RARE (DERARE). Deletion of the DERARE reduced Hoxb expression, resulting in changes to many downstream signaling pathways (e.g., non-canonical Wnt signaling) and loss of HSC self-renewal and reconstitution capacity. DNA methyltransferases mediate DNA methylation on the DERARE, leading to reduced Hoxb cluster expression. Acute myeloid leukemia patients with DNMT3A mutations exhibit DERARE hypomethylation, elevated HOXB expression, and adverse outcomes. CRISPR-Cas9-mediated specific DNA methylation at DERARE attenuated HOXB expression and alleviated leukemogenesis. Collectively, these findings demonstrate pivotal roles for retinoid signaling and the DERARE in maintaining HSCs and preventing leukemogenesis by coordinate regulation of Hoxb genes.


Asunto(s)
Epigénesis Genética/efectos de los fármacos , Hematopoyesis/efectos de los fármacos , Proteínas de Homeodominio/antagonistas & inhibidores , Retinoides/farmacología , Animales , Elementos de Facilitación Genéticos/efectos de los fármacos , Elementos de Facilitación Genéticos/genética , Epigénesis Genética/genética , Células HEK293 , Hematopoyesis/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Retinoides/química
12.
Development ; 144(15): 2824-2836, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28694256

RESUMEN

During development and homeostasis, precise control of Wnt/ß-catenin signaling is in part achieved by secreted and membrane proteins that negatively control activity of the Wnt co-receptors Lrp5 and Lrp6. Lrp4 is related to Lrp5/6 and is implicated in modulation of Wnt/ß-catenin signaling, presumably through its ability to bind to the Wise (Sostdc1)/sclerostin (Sost) family of Wnt antagonists. To gain insights into the molecular mechanisms of Lrp4 function in modulating Wnt signaling, we performed an array of genetic analyses in murine tooth development, where Lrp4 and Wise play important roles. We provide genetic evidence that Lrp4 mediates the Wnt inhibitory function of Wise and also modulates Wnt/ß-catenin signaling independently of Wise. Chimeric receptor analyses raise the possibility that the Lrp4 extracellular domain interacts with Wnt ligands, as well as the Wnt antagonists. Diverse modes of Lrp4 function are supported by severe tooth phenotypes of mice carrying a human mutation known to abolish Lrp4 binding to Sost. Our data suggest a model whereby Lrp4 modulates Wnt/ß-catenin signaling via interaction with Wnt ligands and antagonists in a context-dependent manner.


Asunto(s)
Receptores de LDL/metabolismo , Diente/embriología , Diente/metabolismo , beta Catenina/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas Morfogenéticas Óseas/deficiencia , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Relacionadas con Receptor de LDL , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo , Ratones , Ratones Mutantes , Receptores de LDL/deficiencia , Receptores de LDL/genética , Diente/patología , Vía de Señalización Wnt/genética , Vía de Señalización Wnt/fisiología , beta Catenina/genética
13.
Development ; 144(12): 2212-2221, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28506989

RESUMEN

The patterning of repeated structures is a major theme in developmental biology, and the inter-relationship between spacing and size of such structures is an unresolved issue. Fungiform papillae are repeated epithelial structures that house taste buds on the anterior tongue. Here, we report that FGF signaling is a crucial regulator of fungiform papillae development. We found that mesenchymal FGF10 controls the size of the papillary area, while overall patterning remains unchanged. Our results show that FGF signaling negatively affects the extent of canonical Wnt signaling, which is the main activation pathway during fungiform papillae development; however, this effect does not occur at the level of gene transcription. Rather, our experimental data, together with computational modeling, indicate that FGF10 modulates the range of Wnt effects, likely via induction of Sostdc1 expression. We suggest that modification of the reach of Wnt signaling could be due to local changes in morphogen diffusion, representing a novel mechanism in this tissue context, and we propose that this phenomenon might be involved in a broader array of mammalian developmental processes.


Asunto(s)
Factor 10 de Crecimiento de Fibroblastos/metabolismo , Papilas Gustativas/embriología , Papilas Gustativas/metabolismo , Vía de Señalización Wnt , Proteínas Adaptadoras Transductoras de Señales , Animales , Tipificación del Cuerpo/genética , Tipificación del Cuerpo/fisiología , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Simulación por Computador , Femenino , Factor 10 de Crecimiento de Fibroblastos/deficiencia , Factor 10 de Crecimiento de Fibroblastos/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Modelos Biológicos , Embarazo , Proteínas Serina-Treonina Quinasas
14.
Genome Res ; 25(8): 1229-43, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26025802

RESUMEN

The clustered Hox genes, which are highly conserved across metazoans, encode homeodomain-containing transcription factors that provide a blueprint for segmental identity along the body axis. Recent studies have underscored that in addition to encoding Hox genes, the homeotic clusters contain key noncoding RNA genes that play a central role in development. In this study, we have taken advantage of genome-wide approaches to provide a detailed analysis of retinoic acid (RA)-induced transcriptional and epigenetic changes within the homeotic clusters of mouse embryonic stem cells. Although there is a general colinear response, our analyses suggest a lack of strict colinearity for several genes in the HoxA and HoxB clusters. We have identified transcribed novel noncoding RNAs (ncRNAs) and their cis-regulatory elements that function in response to RA and demonstrated that the expression of these ncRNAs from both strands represent some of the most rapidly induced transcripts in ES cells. Finally, we have provided dynamic analyses of chromatin modifications for the coding and noncoding genes expressed upon activation and suggest that active transcription can occur in the presence of chromatin modifications and machineries associated with repressed transcription state over the clusters. Overall, our data provide a resource for a better understanding of the dynamic nature of the coding and noncoding transcripts and their associated chromatin marks in the regulation of homeotic gene transcription during development.


Asunto(s)
Epigénesis Genética/efectos de los fármacos , Proteínas de Homeodominio/genética , ARN no Traducido/genética , Transcripción Genética/efectos de los fármacos , Tretinoina/farmacología , Animales , Línea Celular , Cromatina/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/efectos de los fármacos , Análisis de Secuencia por Matrices de Oligonucleótidos , Elementos Reguladores de la Transcripción/efectos de los fármacos
15.
Curr Top Dev Biol ; 111: 421-59, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25662268

RESUMEN

Skin appendages develop from placodes involving reciprocal interactions between the surface ectoderm and the underlying mesenchyme during embryogenesis. Despite their distinct shapes and functions, during early development similar morphological changes are observed among different skin appendages. Previous analyses of genetically modified mice have shown that these skin placodes share many aspects of molecular and cellular programs controlled by a relatively small number of signaling pathways during induction, morphogenesis, and transition to bud stage and beyond. This chapter focuses on the major signaling pathways that are reiteratively utilized to control the early developmental processes of placodes for teeth, hair follicles, and mammary glands. I update knowledge on the roles played by individual pathways and cross talk among them in these placodes and discuss similarities as well as differences among the skin appendages.


Asunto(s)
Ectodermo/fisiología , Cabello/embriología , Glándulas Mamarias Animales/embriología , Morfogénesis/fisiología , Transducción de Señal/fisiología , Piel/embriología , Diente/embriología , Animales , Femenino , Cabello/citología , Glándulas Mamarias Animales/citología , Ratones , Morfogénesis/genética , Transducción de Señal/genética , Diente/citología
16.
Methods Mol Biol ; 1196: 59-87, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25151158

RESUMEN

BAC transgenesis in mice has proved to be useful in exploring the regulatory mechanisms and functions of the Hox complexes. The large constructs used may include most of the relevant components of the cis-regulatory landscape. Manipulations can be accomplished without compromising the integrity of the endogenous complex which reduces the likelihood of producing confounding phenotypic abnormalities. The development of recombineering tools has been critical in providing the means necessary to make many types of precise and varied manipulations of these large constructs. Here, we will discuss the methodologies necessary to manipulate Hox complex BACs, generation of transgenic animals bearing these constructs and the utilization of these resources to address fundamental aspects of Hox biology.


Asunto(s)
Cromosomas Artificiales Bacterianos , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Recombinación Genética , Animales , Animales Modificados Genéticamente , Expresión Génica , Marcación de Gen , Vectores Genéticos/genética , Recombinación Homóloga , Integrasas/metabolismo , Ratones , Transgenes
17.
Dev Biol ; 388(1): 134-44, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24525295

RESUMEN

Retinoic acid (RA) signaling plays an important role in determining the anterior boundary of Hox gene expression in the neural tube during embryogenesis. In particular, RA signaling is implicated in a rostral expansion of the neural expression domain of 5׳ Hoxb genes (Hoxb9-Hoxb5) in mice. However, underlying mechanisms for this gene regulation have remained elusive due to the lack of RA responsive element (RARE) in the 5׳ half of the HoxB cluster. To identify cis-regulatory elements required for the rostral expansion, we developed a recombineering technology to serially label multiple genes with different reporters in a single bacterial artificial chromosome (BAC) vector containing the mouse HoxB cluster. This allowed us to simultaneously monitor the expression of multiple genes. In contrast to plasmid-based reporters, transgenic BAC reporters faithfully recapitulated endogenous gene expression patterns of the Hoxb genes including the rostral expansion. Combined inactivation of two RAREs, DE-RARE and ENE-RARE, in the BAC completely abolished the rostral expansion of the 5׳ Hoxb genes. Knock-out of endogenous DE-RARE lead to significantly reduced expression of multiple Hoxb genes and attenuated Hox gene response to exogenous RA treatment in utero. Regulatory potential of DE-RARE was further demonstrated by its ability to anteriorize 5׳ Hoxa gene expression in the neural tube when inserted into a HoxA BAC reporter. Our data demonstrate that multiple RAREs cooperate to remotely regulate 5׳ Hoxb genes during CNS development, providing a new insight into the mechanisms for gene regulation within the Hox clusters.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Elementos de Respuesta , Tretinoina/metabolismo , Animales , Secuencia de Bases , Cromosomas Artificiales Bacterianos/ultraestructura , Elementos de Facilitación Genéticos , Perfilación de la Expresión Génica , Genes Reporteros , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Transgénicos , Datos de Secuencia Molecular , Mutación , Neuronas/metabolismo , Plásmidos/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Recombinación Genética , Retinoides/metabolismo , Homología de Secuencia de Ácido Nucleico , Transducción de Señal , Transgenes
18.
Development ; 140(3): 583-93, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23293290

RESUMEN

The future site of skin appendage development is marked by a placode during embryogenesis. Although Wnt/ß-catenin signaling is known to be essential for skin appendage development, it is unclear which cellular processes are controlled by the signaling and how the precise level of the signaling activity is achieved during placode formation. We have investigated roles for Lrp4 and its potential ligand Wise (Sostdc1) in mammary and other skin appendage placodes. Lrp4 mutant mice displayed a delay in placode initiation and changes in distribution and number of mammary precursor cells leading to abnormal morphology, number and position of mammary placodes. These Lrp4 mammary defects, as well as limb defects, were associated with elevated Wnt/ß-catenin signaling and were rescued by reducing the dose of the Wnt co-receptor genes Lrp5 and Lrp6, or by inactivating the gene encoding ß-catenin. Wise-null mice phenocopied a subset of the Lrp4 mammary defects and Wise overexpression reduced the number of mammary precursor cells. Genetic epistasis analyses suggest that Wise requires Lrp4 to exert its function and that, together, they have a role in limiting mammary fate, but Lrp4 has an early Wise-independent role in facilitating placode formation. Lrp4 and Wise mutants also share defects in vibrissa and hair follicle development, suggesting that the roles played by Lrp4 and Wise are common to skin appendages. Our study presents genetic evidence for interplay between Lrp4 and Wise in inhibiting Wnt/ß-catenin signaling and provides an insight into how modulation of Wnt/ß-catenin signaling controls cellular processes important for skin placode formation.


Asunto(s)
Tipificación del Cuerpo , Proteínas Morfogenéticas Óseas/metabolismo , Glándulas Mamarias Animales/embriología , Receptores de LDL/metabolismo , Vía de Señalización Wnt , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas Morfogenéticas Óseas/genética , Proliferación Celular , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Epistasis Genética , Células Epiteliales/metabolismo , Células Epiteliales/patología , Femenino , Regulación del Desarrollo de la Expresión Génica , Folículo Piloso/metabolismo , Folículo Piloso/patología , Proteínas Relacionadas con Receptor de LDL , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Embarazo , Mapeo de Interacción de Proteínas , Receptores de LDL/genética , Piel/embriología , Piel/metabolismo , Piel/patología , Vibrisas/metabolismo , Vibrisas/patología , beta Catenina/genética , beta Catenina/metabolismo
19.
Development ; 138(18): 4063-73, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21862563

RESUMEN

Much of our knowledge about mammalian evolution comes from examination of dental fossils, because the highly calcified enamel that covers teeth causes them to be among the best-preserved organs. As mammals entered new ecological niches, many changes in tooth number occurred, presumably as adaptations to new diets. For example, in contrast to humans, who have two incisors in each dental quadrant, rodents only have one incisor per quadrant. The rodent incisor, because of its unusual morphogenesis and remarkable stem cell-based continuous growth, presents a quandary for evolutionary biologists, as its origin in the fossil record is difficult to trace, and the genetic regulation of incisor number remains a largely open question. Here, we studied a series of mice carrying mutations in sprouty genes, the protein products of which are antagonists of receptor-tyrosine kinase signaling. In sprouty loss-of-function mutants, splitting of gene expression domains and reduced apoptosis was associated with subdivision of the incisor primordium and a multiplication of its stem cell-containing regions. Interestingly, changes in sprouty gene dosage led to a graded change in incisor number, with progressive decreases in sprouty dosage leading to increasing numbers of teeth. Moreover, the independent development of two incisors in mutants with large decreases in sprouty dosage mimicked the likely condition of rodent ancestors. Together, our findings indicate that altering genetic dosage of an antagonist can recapitulate ancestral dental characters, and that tooth number can be progressively regulated by changing levels of activity of a single signal transduction pathway.


Asunto(s)
Proteínas Tirosina Quinasas Receptoras/fisiología , Diente/embriología , Proteínas Adaptadoras Transductoras de Señales , Animales , Embrión de Mamíferos , Femenino , Dosificación de Gen/fisiología , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Transgénicos , Modelos Biológicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/fisiología , Odontogénesis/genética , Odontogénesis/fisiología , Embarazo , Proteínas Serina-Treonina Quinasas , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Diente/anatomía & histología , Diente/metabolismo , Diente Supernumerario/genética
20.
Dev Biol ; 355(2): 336-48, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21575621

RESUMEN

Segmentation involves subdivision of a developing body part into multiple repetitive units during embryogenesis. In Drosophila and other insects, embryonic segmentation is regulated by genes expressed in the same domain of every segment. Less is known about the molecular basis for segmentation of individual body parts occurring at later developmental stages. The Drosophila transcription factor AP-2 gene, dAP-2, is required for outgrowth of leg and antennal segments and is expressed in every segment boundary within the larval imaginal discs. To investigate the molecular mechanisms generating the segmentally repetitive pattern of dAP-2 expression, we performed transgenic reporter analyses and isolated multiple cis-regulatory elements that can individually or cooperatively recapitulate endogenous dAP-2 expression in different segments of the appendages. We further analyzed an enhancer specific for the proximal femur region which corresponds to the distal-most expression domain of homothorax (hth) in the leg imaginal discs. Hth is known to be responsible for the nuclear localization and, hence, function of the Hox cofactor, Extradenticle (Exd). We show that both Hth and Exd are required for dAP-2 expression in the femur and that a conserved Exd/Hox binding site is essential for enhancer activity. Our loss- and gain-of-function studies further support direct regulation of dAP-2 by Hox proteins and suggest that Hox proteins function redundantly in dAP-2 regulation. Our study reveals that discrete segment-specific enhancers underlie the seemingly simple repetitive expression of dAP-2 and provides evidence for direct regulation of leg segmentation by regional combinations of the proximodistal patterning genes.


Asunto(s)
Antenas de Artrópodos/crecimiento & desarrollo , Tipificación del Cuerpo/fisiología , Proteínas de Drosophila/metabolismo , Drosophila/crecimiento & desarrollo , Extremidades/crecimiento & desarrollo , Factor de Transcripción AP-2/metabolismo , Animales , Drosophila/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Galactósidos , Proteínas de Homeodominio/metabolismo , Indoles , Elementos Reguladores de la Transcripción/genética , Elementos Reguladores de la Transcripción/fisiología , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...