Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FEBS J ; 278(17): 3041-53, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21711450

RESUMEN

In Bacteria and Archaea, high-affinity potassium uptake is mediated by the ATP-driven KdpFABC complex. On the basis of the biochemical properties of the ATP-hydrolyzing subunit KdpB, the transport complex is classified as type IA P-type ATPase. However, the KdpA subunit, which promotes K(+) transport, clearly resembles a potassium channel, such that the KdpFABC complex represents a chimera of ion pumps and ion channels. In the present study, we demonstrate that the blending of these two groups of transporters in KdpFABC also entails a nucleotide-binding mechanism in which the KdpC subunit acts as a catalytic chaperone. This mechanism is found neither in P-type ATPases nor in ion channels, although parallels are found in ABC transporters. In the latter, the ATP nucleotide is coordinated by the LSGGQ signature motif via double hydrogen bonds at a conserved glutamine residue, which is also present in KdpC. High-affinity nucleotide binding to the KdpFABC complex was dependent on the presence of this conserved glutamine residue in KdpC. In addition, both ATP binding to KdpC and ATP hydrolysis activity of KdpFABC were sensitive to the accessibility, presence or absence of the hydroxyl groups at the ribose moiety of the nucleotide. Furthermore, the KdpC subunit was shown to interact with the nucleotide-binding loop of KdpB in an ATP-dependent manner around the ATP-binding pocket, thereby increasing the ATP-binding affinity by the formation of a transient KdpB/KdpC/ATP ternary complex.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Transporte de Catión/metabolismo , Proteínas de Escherichia coli/metabolismo , Chaperonas Moleculares/metabolismo , Subunidades de Proteína/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/metabolismo , Secuencias de Aminoácidos , Sitios de Unión , Biocatálisis , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Glutamina/metabolismo , Enlace de Hidrógeno , Hidrólisis , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Resonancia Magnética Nuclear Biomolecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectrometría de Fluorescencia
2.
Traffic ; 11(10): 1334-46, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20604902

RESUMEN

Within the endomembrane system of eukaryotic cells, multisubunit tethering complexes together with their corresponding Rab-GTPases coordinate vesicle tethering and fusion. Here, we present evidence that two homologous hexameric tethering complexes, the endosomal CORVET (Class C core vacuole/endosome transport) and the vacuolar HOPS (homotypic vacuole fusion and protein sorting) complex, have similar subunit topologies. Both complexes contain two Rab-binding proteins at one end, and the Sec1/Munc18-like Vps33 at the opposite side, suggesting a model on membrane bridging via Rab-GTP and SNARE binding. In agreement, HOPS activity can be reconstituted using purified subcomplexes containing the Rab and Vps33 module, but requires all six subunits for activity. At the center of HOPS and CORVET, the class C proteins Vps11 and Vps18 connect the two parts, and Vps11 binds both HOPS Vps39 and CORVET Vps3 via the same binding site. As HOPS Vps39 is also found at endosomes, our data thus suggest that these tethering complexes follow defined but distinct assembly pathways, and may undergo transition by simple subunit interchange.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Endosomas/metabolismo , Subunidades alfa de la Proteína de Unión al GTP/química , Dominios y Motivos de Interacción de Proteínas , Proteínas de Saccharomyces cerevisiae/química , Vacuolas/metabolismo , Proteínas de Unión al GTP rab/química
3.
Mol Biol Cell ; 20(24): 5276-89, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19828734

RESUMEN

Membrane tethering, the process of mediating the first contact between membranes destined for fusion, requires specialized multisubunit protein complexes and Rab GTPases. In the yeast endolysosomal system, the hexameric HOPS tethering complex cooperates with the Rab7 homolog Ypt7 to promote homotypic fusion at the vacuole, whereas the recently identified homologous CORVET complex acts at the level of late endosomes. Here, we have further functionally characterized the CORVET-specific subunit Vps8 and its relationship to the remaining subunits using an in vivo approach that allows the monitoring of late endosome biogenesis. In particular, our results indicate that Vps8 interacts and cooperates with the activated Rab5 homolog Vps21 to induce the clustering of late endosomal membranes, indicating that Vps8 is the effector subunit of the CORVET complex. This clustering, however, requires Vps3, Vps16, and Vps33 but not the remaining CORVET subunits. These data thus suggest that the CORVET complex is built of subunits with distinct activities and potentially, their sequential assembly could regulate tethering and successive fusion at the late endosomes.


Asunto(s)
Endosomas/metabolismo , Subunidades de Proteína/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab5/química , Transporte Biológico , Compartimento Celular , Endosomas/ultraestructura , Guanosina Trifosfato/metabolismo , Membranas Intracelulares/metabolismo , Cuerpos Multivesiculares/metabolismo , Cuerpos Multivesiculares/ultraestructura , Unión Proteica , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/ultraestructura
4.
Biochemistry ; 45(36): 11038-46, 2006 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-16953591

RESUMEN

P-Type ATPases catalyze the transport of cations across the cell envelope via site-specific hydrolysis of ATP. Modulation of enzyme activity by additional small subunits and/or a second regulatory nucleotide binding site is still a subject of discussion. In the K(+)-transporting KdpFABC complex of Escherichia coli, KdpB resembles the catalytic P-type ATPase subunit, but ATP binding also occurs in the essential but noncatalytic subunit, KdpC. For further characterization, the soluble portion of KdpC (KdpC(sol), residues Asn39-Glu190) was synthesized separately and purified to homogeneity via affinity and size exclusion chromatography. Protein integrity was confirmed by N-terminal sequencing, mass spectrometry, and circular dichroism spectroscopy, which revealed an alpha-helical content of 44% together with an 8% beta-sheet conformation consistent with the values deduced from the primary sequence. The overall protein structure was not affected by the addition of ATP to a concentration of up to 2 mM. In contrast, labeling of KdpC(sol) with the photoreactive ATP analogue 8-azido-ATP resulted in the specific incorporation of one molecule of 8-azido-ATP per peptide. No labeling could be observed upon denaturation of the protein with 0.2% sodium dodecyl sulfate, which suggests the presence of a structured nucleotide binding site. Labeling could be inhibited by preincubation with either ATP, ADP, AMP, GTP, or CTP, thus demonstrating a low specificity for nucleotides. Following 8-azido-ATP labeling and tryptic digestion of KdpC(sol), mass spectrometry showed that ATP binding occurred within the Val144-Lys161 peptide located within the C-terminal part of KdpC, thereby further demonstrating a defined nucleotide binding site. On the basis of these findings, a cooperative model in which the soluble part of KdpC activates catalysis of KdpB is suggested.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/química , Secuencia de Aminoácidos , Azidas/química , Sitios de Unión , Proteínas de Transporte de Catión/genética , Dicroismo Circular , Proteínas de Escherichia coli/genética , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Ingeniería de Proteínas/métodos , Estructura Secundaria de Proteína , Solubilidad , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA