Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Immunol ; 9(94): eadh2334, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38669316

RESUMEN

T cells are often absent from human cancer tissues during both spontaneously induced immunity and therapeutic immunotherapy, even in the presence of a functional T cell-recruiting chemokine system, suggesting the existence of T cell exclusion mechanisms that impair infiltration. Using a genome-wide in vitro screening platform, we identified a role for phospholipase A2 group 10 (PLA2G10) protein in T cell exclusion. PLA2G10 up-regulation is widespread in human cancers and is associated with poor T cell infiltration in tumor tissues. PLA2G10 overexpression in immunogenic mouse tumors excluded T cells from infiltration, resulting in resistance to anti-PD-1 immunotherapy. PLA2G10 can hydrolyze phospholipids into small lipid metabolites, thus inhibiting chemokine-mediated T cell mobility. Ablation of PLA2G10's enzymatic activity enhanced T cell infiltration and sensitized PLA2G10-overexpressing tumors to immunotherapies. Our study implicates a role for PLA2G10 in T cell exclusion from tumors and suggests a potential target for cancer immunotherapy.


Asunto(s)
Neoplasias , Linfocitos T , Regulación hacia Arriba , Animales , Femenino , Humanos , Ratones , Línea Celular Tumoral , Inmunoterapia/métodos , Linfocitos Infiltrantes de Tumor/inmunología , Ratones Endogámicos C57BL , Neoplasias/inmunología , Fosfolipasas A/inmunología , Fosfolipasas A/genética , Fosfolipasas A2/inmunología , Linfocitos T/inmunología , Regulación hacia Arriba/inmunología
2.
Biomed Res Int ; 2021: 6626851, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33623783

RESUMEN

Active immunotherapy against cancer is based on immune system stimulation, triggering efficient and long-lasting antigen-specific immune responses. Immunization strategies using whole dead cells from tumor tissue, containing specific antigens inside, have become a promising approach, providing efficient lymphocyte activation through dendritic cells (DCs). In this work, we generate whole dead tumor cells from CT26, E.G7, and EL4 live tumor cells as antigen sources, which termed immunogenic cell bodies (ICBs), generated by a simple and cost-efficient starvation-protocol, in order to determine whether are capable of inducing a transversal anticancer response regardless of the tumor type, in a similar way to what we describe previously with B16 melanoma. We evaluated the anticancer effects of immunization with doses of ICBs in syngeneic murine tumor models. Our results showed that mice's immunization with ICBs-E.G7 and ICBs-CT26 generate 18% and 25% of tumor-free animals, respectively. On the other hand, all carrying tumor-animals and immunized with ICBs, including ICBs-EL4, showed a significant delay in their growth compared to not immunized animals. These effects relate to DCs maturation, cytokine production, increase in CD4+T-bet+ and CD4+ROR-γt+ population, and decrease of T regulatory lymphocytes in the spleen. Altogether, our data suggest that whole dead tumor cell-based cancer immunotherapy generated by a simple starvation protocol is a promising way to develop complementary, innovative, and affordable antitumor therapies in a broad spectrum of tumors.


Asunto(s)
Antígenos de Neoplasias , Neoplasias del Colon/inmunología , Inmunoterapia , Linfoma/inmunología , Células Tumorales Cultivadas/inmunología , Animales , Antígenos de Neoplasias/inmunología , Antígenos de Neoplasias/metabolismo , Autofagia , Técnicas de Cultivo de Célula , Citocinas/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Bazo/citología
3.
Exp Gerontol ; 110: 73-78, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29782967

RESUMEN

Immunosenescence has been described as age-associated changes in the immune function which are thought to be responsible for the increased morbidity with age. Human Natural Killer (NK) cells are a specialized heterogeneous subpopulation of lymphocytes involved in immune defense against tumor and microbial diseases. Interestingly, aging-related NK cell dysfunction is associated with features of aging such as tumor incidence, reduced vaccination efficacy, and short survival due to infection. It is known that NK cell effector functions are critically dependent on cytokines and metabolic activity. Our aim was to determine whether there is a difference in purified human NK cell function in response to high concentration of IL-2 between young and elder donors. Here, we report that the stimulation of human NK cells with IL-2 (2000 U/mL) enhance NK cell cytotoxic activity from both young and elderly donors. However, while NK cells from young people responded to IL-2 signaling by increasing mitochondrial mass and mitochondrial membrane potential, no increase in these mitochondrial functional parameters was seen in purified NK cells from elderly subjects. Moreover, as purified NK cells from the young exhibited an almost three-fold increase in PGC-1α expression after IL-2 (2000 U/mL) stimulation, PGC-1α expression was inhibited in purified NK cells from elders. Furthermore, this response upon PGC-1α expression after IL-2 stimulation promoted an increase in ROS production in NK cells from elderly humans, while no increase in ROS production was observed in NK cells of young donors. Our data show that IL-2 stimulates NK cell effector function through a signaling pathway which involves a PGC-1α-dependent mitochondrial function in young NK cells, however it seems that NK cells from older donors exhibit an altered IL-2 signaling which affects mitochondrial function associated with an increased production of ROS which could represent a feature of NK cell senescence.


Asunto(s)
Células Asesinas Naturales/metabolismo , Mitocondrias/metabolismo , Biogénesis de Organelos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Anciano , Anciano de 80 o más Años , Células Cultivadas , Inhibidores Enzimáticos/farmacología , Femenino , Humanos , Interleucina-2/farmacología , Células K562 , Células Asesinas Naturales/efectos de los fármacos , Masculino , Potencial de la Membrana Mitocondrial , Persona de Mediana Edad , Mitocondrias/efectos de los fármacos , ATPasas de Translocación de Protón Mitocondriales/antagonistas & inhibidores , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Transducción de Señal , Regulación hacia Arriba
4.
Mediators Inflamm ; 2016: 9605253, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27413259

RESUMEN

Human Natural Killer (NK) cells are a specialized heterogeneous subpopulation of lymphocytes involved in antitumor defense reactions. NK cell effector functions are critically dependent on cytokines and metabolic activity. Among various cytokines modulating NK cell function, interleukin-2 (IL-2) can induce a more potent cytotoxic activity defined as lymphokine activated killer activity (LAK). Our aim was to determine if IL-2 induces changes at the mitochondrial level in NK cells to support the bioenergetic demand for performing this enhanced cytotoxic activity more efficiently. Purified human NK cells were cultured with high IL-2 concentrations to develop LAK activity, which was assessed by the ability of NK cells to lyse NK-resistant Daudi cells. Here we show that, after 72 h of culture of purified human NK cells with enough IL-2 to induce LAK activity, both the mitochondrial mass and the mitochondrial membrane potential increased in a PGC-1α-dependent manner. In addition, oligomycin, an inhibitor of ATP synthase, inhibited IL-2-induced LAK activity at 48 and 72 h of culture. Moreover, the secretion of IFN-γ from NK cells with LAK activity was also partially dependent on PGC-1α expression. These results indicate that PGC-1α plays a crucial role in regulating mitochondrial function involved in the maintenance of LAK activity in human NK cells stimulated with IL-2.


Asunto(s)
Células Asesinas Naturales/metabolismo , Células Asesinas Naturales/fisiología , Mitocondrias/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Inhibidores Enzimáticos/farmacología , Citometría de Flujo , Humanos , Interferón gamma/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potencial de la Membrana Mitocondrial/fisiología , Mitocondrias/efectos de los fármacos , ATPasas de Translocación de Protón Mitocondriales/antagonistas & inhibidores , Oligomicinas/farmacología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA