Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Animal ; 17(7): 100871, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37393740

RESUMEN

Information about the amino acid (AA) supply of locally produced protein supplements to dairy cow metabolism is needed to design sustainable diets for milk production. In this dairy cow experiment, grass silage and cereal-based diets supplemented with isonitrogenous amounts of rapeseed meal (RSM), faba beans (FB) and blue lupin seeds (BL) were compared with a control diet (CON) without protein supplementation. The diets were arranged as a 4 × 4 Latin Square using periods of 21 days, and four rumen-cannulated Nordic Red dairy cows were used in the experiment. The intake of all AAs increased in response to protein supplementation and was for many individual AAs higher when RSM rather than the grain legumes FB and BL were fed. The total AA flow at the omasal canal was 3 026, 3 371, 3 373 and 3 045 g/day for cows fed CON, RSM, FB and BL, respectively, but only RSM resulted in higher milk protein output. This may be explained by the higher provision of essential AA for milk protein synthesis when RSM was fed. The cows fed FB showed some positive features such as a tendency for greater omasal flow of branched-chain AA compared with BL. Overall, low plasma methionine and/or glucose concentrations in all treatments suggest that their supply was possibly limiting further production responses under the dietary conditions of the current study. It seems that the benefits of grain legume supplementation are limited when high-quality grass silage and cereal-based diets are used as the basal diet, but higher responses in amino acid supply and subsequent production responses can be expected when RSM is used.


Asunto(s)
Brassica napus , Brassica rapa , Vicia faba , Femenino , Bovinos , Animales , Poaceae/metabolismo , Ensilaje/análisis , Brassica napus/metabolismo , Lactancia/fisiología , Fermentación , Dieta/veterinaria , Suplementos Dietéticos , Proteínas de la Leche/metabolismo , Aminoácidos/metabolismo , Rumen/metabolismo
2.
J Dairy Sci ; 105(9): 7462-7481, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35931475

RESUMEN

Manure nitrogen (N) from cattle contributes to nitrous oxide and ammonia emissions and nitrate leaching. Measurement of manure N outputs on dairy farms is laborious, expensive, and impractical at large scales; therefore, models are needed to predict N excreted in urine and feces. Building robust prediction models requires extensive data from animals under different management systems worldwide. Thus, the study objectives were (1) to collate an international database of N excretion in feces and urine based on individual lactating dairy cow data from different continents; (2) to determine the suitability of key variables for predicting fecal, urinary, and total manure N excretion; and (3) to develop robust and reliable N excretion prediction models based on individual data from lactating dairy cows consuming various diets. A raw data set was created based on 5,483 individual cow observations, with 5,420 fecal N excretion and 3,621 urine N excretion measurements collected from 162 in vivo experiments conducted by 22 research institutes mostly located in Europe (n = 14) and North America (n = 5). A sequential approach was taken in developing models with increasing complexity by incrementally adding variables that had a significant individual effect on fecal, urinary, or total manure N excretion. Nitrogen excretion was predicted by fitting linear mixed models including experiment as a random effect. Simple models requiring dry matter intake (DMI) or N intake performed better for predicting fecal N excretion than simple models using diet nutrient composition or milk performance parameters. Simple models based on N intake performed better for urinary and total manure N excretion than those based on DMI, but simple models using milk urea N (MUN) and N intake performed even better for urinary N excretion. The full model predicting fecal N excretion had similar performance to simple models based on DMI but included several independent variables (DMI, diet crude protein content, diet neutral detergent fiber content, milk protein), depending on the location, and had root mean square prediction errors as a fraction of the observed mean values of 19.1% for intercontinental, 19.8% for European, and 17.7% for North American data sets. Complex total manure N excretion models based on N intake and MUN led to prediction errors of about 13.0% to 14.0%, which were comparable to models based on N intake alone. Intercepts and slopes of variables in optimal prediction equations developed on intercontinental, European, and North American bases differed from each other, and therefore region-specific models are preferred to predict N excretion. In conclusion, region-specific models that include information on DMI or N intake and MUN are required for good prediction of fecal, urinary, and total manure N excretion. In absence of intake data, region-specific complex equations using easily and routinely measured variables to predict fecal, urinary, or total manure N excretion may be used, but these equations have lower performance than equations based on intake.


Asunto(s)
Lactancia , Nitrógeno , Animales , Bovinos , Dieta/veterinaria , Fibras de la Dieta/metabolismo , Femenino , Estiércol , Leche/química , Nitrógeno/metabolismo , Urea/metabolismo
3.
J Dairy Sci ; 105(2): 1211-1224, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34799103

RESUMEN

We evaluated the potential of feeding high-oil rapeseed cake or natural additives as rumen modifiers on enteric methane (CH4) emissions, nutrient utilization, performance, and milk fatty acid (FA) profile of dairy cows. Eight Nordic Red dairy cows averaging (mean ± SD) 81 ± 21 d in milk and 41.0 ± 1.9 kg of milk yield at the beginning of the study were randomly assigned to a replicated 4 × 4 Latin square design with 21-d periods. Treatments comprised grass silage-based diets (45:55 forage to concentrate ratio on dry matter basis) including (1) control containing 19.3% rapeseed meal (CON), (2) CON with full replacement of rapeseed meal with rapeseed cake (RSC), (3) supplementation of CON with 50 g/d of yeast hydrolysate product plus coniferous resin acid-based compound (YHR), and (4) supplementation of CON with 20 g/d of combination of garlic-citrus extract and essential oils in a pellet (GCE). Apparent total-tract digestibility was measured using total collection of feces, and CH4 emissions were measured in respiratory chambers on 4 consecutive days. Data collected during d 17 and 21 in each period were used for ANOVA analysis using a mixed model. Treatments did not affect dry matter intake (DMI), whereas feeding RSC increased crude protein and ether extract digestibility compared with the other diets. Emissions of CH4 per day, per kilogram of DMI, and per kilogram of energy-corrected milk, and gross energy intake were lower for RSC compared with other diets. We found no effect of YHR on daily CH4 emissions, whereas CH4 yield (g of CH4/kg of DMI or as percentage of gross energy intake) decreased with GCE compared with CON. Treatments did not influence energy balance. Further, RSC reduced the proportion of N intake excreted in feces, and YHR improved N balance compared with CON diet. Feeding RSC resulted in greatest yields of milk and energy-corrected milk, and feed efficiency. Relative to the CON diet, RSC decreased saturated FA by 10% in milk fat by increasing cis-monounsaturated FA but also increased the proportion of trans FA. Proportion of odd- and branched-chain FA increased with GCE and YHR compared with CON. We conclude that replacing rapeseed meal by rapeseed cake decreased CH4 emissions, whereas YHR or GCE had no effect on CH4 emissions in this study.


Asunto(s)
Brassica napus , Metano , Animales , Bovinos , Dieta/veterinaria , Digestión , Femenino , Lactancia , Leche , Rumen , Ensilaje/análisis , Zea mays
4.
Animal ; 15(7): 100300, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34174593

RESUMEN

There is increasing interest in using locally produced protein supplements in dairy cow feeding. The objective of this experiment was to compare rapeseed meal (RSM), faba beans (FBs) and blue lupin seeds (BL) at isonitrogenous amounts as supplements of grass silage and cereal based diets. A control diet (CON) without protein supplement was included in the experiment. Four lactating Nordic Red cows were used in a 4 × 4 Latin Square design with four 21 d periods. The milk production increased with protein supplementation but when expressed as energy corrected milk, the response disappeared due to substantially higher milk fat concentration with CON compared to protein supplemented diets. Milk protein output increased by 8.5, 4.4 and 2.7% when RSM, FB and BL were compared to CON. The main changes in rumen fermentation were the higher propionate and lower butyrate proportion of total rumen volatile fatty acids when the protein supplemented diets were compared to CON. Protein supplementation also clearly increased the ruminal ammonia N concentration. Protein supplementation improved diet organic matter and NDF digestibility but efficiency of microbial protein synthesis per kg organic matter truly digested was not affected. Flow of microbial N was greater when FB compared to BL was fed. All protein supplements decreased the efficiency of nitrogen use in milk production. The marginal efficiency (amount of additional feed protein captured in milk protein) was 0.110, 0.062 and 0.045 for RSM, FB and BL, respectively. The current study supports the evidence that RSM is a good protein supplement for dairy cows, and this effect was at least partly mediated by the lower rumen degradability of RSM protein compared to FB and BL. The relatively small production responses to protein supplementation with simultaneous decrease in nitrogen use efficiency in milk production suggest that economic and environmental consequences of protein feeding need to be carefully considered.


Asunto(s)
Brassica napus , Vicia faba , Animales , Bovinos , Dieta/veterinaria , Suplementos Dietéticos , Digestión , Femenino , Fermentación , Lactancia , Nitrógeno/metabolismo , Poaceae , Rumen/metabolismo , Ensilaje/análisis
5.
J Dairy Sci ; 103(8): 7081-7093, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32505411

RESUMEN

The present study was conducted to investigate ruminal N metabolism in dairy cows using 15N labeled N sources [ammonia N (AN), soluble non-ammonia N (SNAN) from rapeseed meal, and insoluble non-ammonia N (NAN) from rapeseed meal]. To describe the observed pattern of 15N transactions in the rumen, dynamic compartmental models were developed. The experiment consisted of 3 experimental treatments allocated to 4 cows according to a changeover design. The results from 2 treatments (AN and rapeseed meal SNAN) are reported in this paper. Ammonia N and rapeseed SNAN, both labeled with 15N, were administered intraruminally. Rumen evacuations in combination with grab samples from the rumen contents were used to determine ruminal N pool sizes. The 15N-atom% excess was determined in N fractions of rumen digesta samples that were distributed between 0 and 82 h after dosing. For the AN treatment, a 2-compartment model was developed to describe the observed pattern in 15N-atom% excess pool sizes of AN and bacterial N and to estimate kinetic parameters of ruminal 15N transactions. For the SNAN treatment, an additional compartment of SNAN was included in the model. Model simulations were used to estimate N fluxes in the rumen. Both models described the observed pattern of 15N-atom% excess pool sizes accurately, based on small residuals between observed and predicted values. Immediate increases in 15N-atom% excess of bacterial N with AN treatment suggested that microbes absorbed AN from extracellular pools rapidly to maintain sufficient intracellular concentrations. Proportionally 0.69 of the AN dose was recovered as NAN flow from the rumen. A rapid disappearance of labeled SNAN from rumen fluid and appearance in bacterial N pool indicated that, proportionally, 0.56 of SNAN was immediately either adsorbed to bacterial cell surfaces or taken up to intracellular pools. Immediate uptake of labeled SNAN was greater than that of AN (proportionally 0.56 vs. 0.16 of the dose). Degradation rate of SNAN to AN was relatively slow (0.46/h), but only 0.08 of the SNAN dose was estimated to escape ruminal degradation because of rapid uptake by the bacteria. Overall, losses of the 15N dose as AN absorption and outflow from the rumen were higher (P < 0.01) for the AN than the SNAN treatment (0.31 and 0.11 of the dose, respectively). Consequently, recovery as NAN flow was greater for SNAN than for AN treatment (0.89 vs. 0.69 of the dose). Estimated rate of bacterial N recycling to AN was on average 0.006/h, which suggests that N losses due to intraruminal recycling are small in dairy cows fed at high intake levels. We conclude that SNAN isolated from rapeseed meal had better ruminal N utilization efficiency than AN, as indicated by smaller ruminal N losses as AN (0.11 vs. 0.31 of the dose) and greater bacterial N flow (0.81 vs. 0.69 of the dose). Furthermore, the current findings indicate that rapid adsorption of soluble proteins to bacterial cells plays an important role in ruminal N metabolism.


Asunto(s)
Amoníaco/metabolismo , Bacterias/metabolismo , Brassica napus/química , Bovinos/metabolismo , Nitrógeno/metabolismo , Animales , Duodeno/metabolismo , Femenino , Lactancia , Isótopos de Nitrógeno/análisis , Proteínas de Plantas/metabolismo , Rumen/metabolismo
6.
Animal ; 13(10): 2277-2288, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30806342

RESUMEN

Direct measurement of individual animal dry matter intake (DMI) remains a fundamental challenge to assessing dairy feed efficiency (FE). Digesta marker, is currently the most used indirect technique for estimating DMI in production animals. In this meta-analysis we evaluated the performance of marker-based estimates against direct or observed measurements and developed equations for the prediction of FE (g energy-corrected milk (ECM)/kg DMI). Data were taken from 29 change-over studies consisting of 416 cow-within period observations. Most studies used more than one digesta marker. So, for each observed measurement of DMI, faecal dry matter output (FDMO) and apparent total tract dry matter digestibility (DMD), there was one or more corresponding marker estimate. There were 924, 409 and 846 observations for estimated FDMO (eFDMO), estimated apparent total tract DMD (eDMD) and estimated DMI (eDMI), respectively. The experimental diets were based mainly on grass silage, with soya bean or rapeseed meal as protein supplements and cereal grains or by-products as energy supplements. Across all diets, average forage to concentrate ratio on a dry matter (DM) basis was 59 : 41. Variance component and repeatability estimates of observed and marker estimations were determined using random factors in mixed procedures of SAS. Between-cow CV in observed FDMO, DMD and DMI was, 10.3, 1.69 and 8.04, respectively. Overall, the repeatability estimates of observed variables were greater than their corresponding marker-based estimates of repeatability. Regression of observed measurements on marker-based estimates gave good relationships (R2=0.87, 0.68, 0.74 and 0.74, relative prediction error =10.9%, 6.5%, 15.4% and 18.7%for FDMO, DMD, DMI and FE predictions, respectively). Despite this, the mean and slope biases were statistically significant (P<0.001) for all regressions. More than half of the errors in all regressions were due to mean and slope biases (52.4% 87.4%, 82.9% and 85.8% for FDMO, DMD, DMI and FE, respectively), whereas the contributions of random errors were small. Based on residual variance, the best model for predicting FE developed from the dataset was FE (g ECM/kg DMI)=1179(±54.1) +38.2(±2.05)×ECM(kg/day)-0.64(±0.051)×BW (kg)-75.6(±4.39)×eFDMO (kg/day). Although eDMD was positively related to FE, it only showed a tendency to reduce the residual variance. Despite inaccuracy in marker procedures, eFDMO from external markers provided a reliable determination for FE measurement. However, DMD estimated by internal markers did not improve prediction of FE, probably reflecting small variability.


Asunto(s)
Bovinos/fisiología , Ingestión de Alimentos , Ingestión de Energía , Leche/metabolismo , Ensilaje/análisis , Alimentación Animal/análisis , Animales , Biomarcadores/análisis , Brassica napus , Dieta/veterinaria , Suplementos Dietéticos , Digestión , Heces , Femenino , Lactancia , Poaceae , Análisis de Regresión , Glycine max
7.
J Dairy Sci ; 101(10): 9004-9015, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30122414

RESUMEN

The objective of this study was to determine the effects of supplementation of protein deficient diet with increasing amounts of urea-N on feed intake, milk yield, rumen fermentation, and nutrient digestibility in dairy cows. The hypothesis was that low rumen ammonia-N concentrations provide suboptimal conditions for rumen microbes and these conditions can be alleviated by urea-N that increases rumen ammonia-N concentrations. To evaluate this hypothesis, the diet was formulated slightly deficient with respect to rumen-degradable protein. To supplement the diet with rumen degradable N, 5 levels of urea-N (0, 17, 33, 49, and 66 g/d) were continuously infused into the rumen of 5 dairy cows according to a 5 × 5 Latin square. Increasing levels of urea-N infusion increased N intake and N excretion in urine and feces in a linear manner and tended to increase milk and milk protein yields. Feed intake and fiber digestibility were not affected by urea-N infusion levels. Rumen ammonia-N concentrations remained low (3.5 mg/100 mL) and did not respond to urea-N infusions levels between 0 to 49 g/d, whereas the highest level of urea-N (66 g/d) increased rumen ammonia-N concentration to 5.1 mg/100 mL (quadratic effect). These observations suggested that rumen microbes efficiently captured ammonia-N from rumen fluid until sufficient intracellular ammonia-N concentrations were attained, after which ammonia-N concentrations started to increase in extracellular rumen fluid. In contrast, milk urea-N concentrations increased in a curvilinear manner (cubic effect) from 4.4 to around 6 mg/100 mL for the medium levels of urea-N and then to 7.9 mg/100 mL for the highest level of urea-N infusion. The current results indicated that 18% of supplementary N intake was secreted in milk and 53% in urine. In spite of low rumen ammonia-N concentrations observed for the basal diet, it was estimated that only 43% of supplementary N was captured by rumen microbes. Estimated true digestibility for supplementary N (93%) provided further evidence that urea-N stimulated microbial N synthesis. The current results indicate that rumen ammonia-N concentration was an insensitive indicator of N deficiency at low levels of diet CP, whereas milk urea-N was responsive to diet CP concentrations at all urea-N infusion levels.


Asunto(s)
Bovinos/fisiología , Ingestión de Energía/fisiología , Leche/metabolismo , Nitrógeno/administración & dosificación , Nitrógeno/metabolismo , Alimentación Animal , Animales , Dieta , Proteínas en la Dieta , Digestión , Femenino , Fermentación , Lactancia , Rumen , Urea
8.
J Dairy Sci ; 101(5): 4245-4258, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29501343

RESUMEN

The objective of this study was to evaluate the accuracy of fecal output measurements using polyethylene glycol (PEG) as an external marker determined by near-infrared reflectance spectroscopy. In addition, the accuracy of dry matter intake predictions based on fecal output and digestibility estimated using an internal marker [indigestible neutral detergent fiber (iNDF)] was assessed. The experiment was conducted using 6 lactating dairy cows fed 2 different diets. Polyethylene glycol was administered twice daily into the rumen and the diurnal pattern of fecal concentrations and recovery in feces were determined. To evaluate the effects of alternative marker administration and sampling schemes on fecal output estimates, the passage kinetics of PEG in the digestive tract of dairy cows was determined and used for simulation models. The results indicate that PEG was completely recovered in feces and, thus, fecal output was accurately estimated using PEG. Good agreement between measured and predicted dry matter intake (standard error of prediction = 0.86 kg/d, R2 = 0.81) indicates good potential to determine feed intake using PEG in combination with iNDF. The precision of cow-specific digestibility estimates based on iNDF was unsatisfactory, but for a group of cows iNDF provided an accurate estimate of dry matter digestibility. The current study indicated that, to overcome inherent day-to-day variation in feed intake and fecal output, the minimum of 4 fecal spot samples should be collected over 4 d. Preferably, these samples should be distributed evenly over the 12-h marker administration interval to compensate for the circadian variation in fecal PEG concentrations.


Asunto(s)
Bovinos/metabolismo , Heces/química , Polietilenglicoles/análisis , Alimentación Animal/análisis , Animales , Biomarcadores/análisis , Dieta/veterinaria , Fibras de la Dieta/análisis , Fibras de la Dieta/metabolismo , Digestión , Femenino , Lactancia , Polietilenglicoles/metabolismo , Rumen/metabolismo , Espectroscopía Infrarroja Corta/métodos
9.
J Dairy Sci ; 101(4): 3021-3035, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29428753

RESUMEN

Fish oil (FO) alters ruminal biohydrogenation causing trans fatty acid (FA) intermediates to accumulate, but the effects of 18-carbon polyunsaturated FA supply on ruminal long-chain FA metabolism and microbial communities in cattle fed FO are not well established. Four cows fitted with rumen cannula were used in a 4 × 4 Latin square with 21-d experimental periods to evaluate the effects of FO alone or in combination with plant oils high in 18:2n-6 or 18:3n-3 on rumen microbial ecology and flow of FA at the omasum. Treatments comprised a basal grass silage-based diet containing no additional oil (control) or supplements of FO (200 g/d) or FO (200 g/d) plus 500 g/d of sunflower oil (SFO) or linseed oil (LFO). Flow of FA was determined using the omasal sampling technique. The relative abundance of key biohydrogenating bacteria was assessed by quantitative PCR on 16S rRNA genes in omasal digesta. Fish oil-supplemented treatments increased the amounts of trans-18:1, trans-18:2, and 20- to 22-carbon polyunsaturated FA escaping the rumen. Relative to the control, oil supplements had no effect on the amount of 18:0 leaving the rumen, but LFO decreased the flow of 18:0 at the omasum compared with SFO. Both SFO and LFO increased trans-18:1 relative to FO, whereas LFO resulted in the highest trans-18:2 and 20- to 22-carbon FA flow. Supplements of FO plus plant oils shifted biohydrogenation toward trans-10 18:1 formation. Compared with FO alone, the ruminal metabolism of 22:6n-3 in the rumen of lactating cows is more extensive on diets containing higher amounts of 18-carbon polyunsaturated FA. However, the biohydrogenation of 22:5n-3 was less extensive in LFO than SFO, but showed no difference between FO and diets containing plant oils. Ruminal outflow of 20:5n-3 was not altered when plant oils were added to FO. Alterations in the amount of intermediates at the omasum or ruminal biohydrogenation pathways were not accompanied by major changes in analyzed bacterial populations. In conclusion, dietary supplements of FO alone or in combination with plant oils increase the amount of biohydrogenation intermediates containing 1 or more trans double bonds escaping the rumen, which may have implications for host metabolism and the nutritional quality of ruminant foods.


Asunto(s)
Bovinos/metabolismo , Bovinos/microbiología , Aceites de Pescado/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Aceite de Linaza/metabolismo , Metabolismo de los Lípidos , Aceite de Girasol/metabolismo , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales/efectos de los fármacos , Animales , Dieta/veterinaria , Suplementos Dietéticos/análisis , Ácidos Grasos/análisis , Femenino , Aceites de Pescado/administración & dosificación , Lactancia , Aceite de Linaza/administración & dosificación , Metabolismo de los Lípidos/efectos de los fármacos , Omaso/metabolismo , Rumen/efectos de los fármacos , Rumen/metabolismo , Rumen/microbiología , Aceite de Girasol/administración & dosificación
10.
J Dairy Sci ; 101(1): 279-294, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29103707

RESUMEN

The present study was conducted to investigate ruminal N metabolism in dairy cows using 15N-labeled N sources and dynamic models. The data summarized in this study were obtained from 2 of 4 treatments whose effects were determined in a 4 × 4 Latin square design. Soluble N (SN) isolated from timothy grass silage labeled with 15N and ammonia N (AN) labeled with 15N were administered into the rumen contents of 4 ruminally cannulated dairy cows. Ruminal N pool sizes were determined by manual evacuation of rumen contents. The excess 15N-atom% was determined in N-fractions of rumen digesta grab samples that were collected frequently between 0 to 72 h and used to determine 15N metabolism in the rumen. Calculations of area under the curve ratios of 15N were used to estimate proportions of N fractions originating from precursor N pools. A model including soluble nonammonia N (SNAN), AN, bacterial N, and protozoal N pools was developed to predict observed values of 15N atomic excess pool sizes. The model described the pool sizes accurately based on small residuals between observed and predicted values. An immediate increase in 15N enrichment of protozoal N suggests physical attachment of bacteria pool to protozoa pool. The mean proportions of bacterial N, protozoal N, and feed N in rumen solid phase were 0.59, 0.20, and 0.21, respectively. These observations suggest that protozoal N accounted for 0.25 of rumen microbial N. About 0.90 of the initial dose of AN was absorbed or taken up by microbes within 2 h. Faster 15N enrichment of bacterial N with SN than with AN treatment indicates a rapid adsorption of SNAN to microbial cells. Additionally, the recovery of 15N as microbial and feed N flow from the rumen was approximately 0.36 greater for SN than for the AN treatment, indicating that SNAN was more efficiently used for microbial growth than AN. The present study indicated that about 0.15 of microbial N flowing to the duodenum was of protozoal origin and that 0.95 of the protozoal N originated from engulfed bacterial N. The kinetic variables indicated that 0.125 of SNAN escaped ruminal degradation, which calls into question the use of in situ estimations of protein degradation to predict the flow of rumen undegradable protein.


Asunto(s)
Bovinos/fisiología , Nitrógeno/química , Rumen/metabolismo , Ensilaje/análisis , Amoníaco/metabolismo , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Bacterias/metabolismo , Dieta/veterinaria , Digestión , Duodeno/metabolismo , Femenino , Nitrógeno/metabolismo , Isótopos de Nitrógeno , Poaceae/metabolismo
11.
J Dairy Sci ; 101(2): 1164-1176, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29174152

RESUMEN

This study evaluated the relationship between utilizable crude protein (uCP) at the duodenum estimated in vitro and omasal flow of crude protein (CP; omasal flow of nonammonia N × 6.25) measured in lactating dairy cows. In vivo data were obtained from previous studies estimating omasal digesta flow using a triple-marker method and 15N as microbial marker. A total of 34 different diets based on grass and red clover silages were incubated with buffered rumen fluid previously preincubated with carbohydrates for 3 h. The buffer solution was modified to contain 38 g of NaHCO3 and 1 g of (NH4)HCO3 in 1,000 mL of distilled water. Continuous sampling of the liquid phase for determination of ammonia-N was performed at 0.5, 4, 8, 12, 24, and 30 h after the start of incubation. The ammonia N concentrations after incubation were used to calculate uCP. The natural logarithm of uCP [g/kg of dry matter (DM)] at time points 0.5, 4, 8, 12, 24, and 30 h of incubation was plotted against time to estimate the concentration of uCP (g/kg of DM) at time points 16, 20, and 24 h using an exponential function. Fixed model regression analysis and mixed model regression analysis with random study effect were used to evaluate the relationships between predicted uCP (supply and concentration) and observed omasal CP flow and milk protein yield. Residual analysis was also conducted to evaluate whether any dietary factors influenced the relationships. The in vitro uCP method ranked the diets accurately in terms of total omasal CP flow (kg/d) or omasal CP flow per kilogram of DM intake. We also noted a close relationship between estimated uCP supply and adjusted omasal CP flow, as demonstrated by a coefficient of determination of 0.87, although the slope of 0.77 indicated that estimated uCP supply (kg/d) was greater than the value determined in vivo. The linear bias with mixed model analysis indicated that uCP supply overestimated the difference in omasal CP flow between the diets within a study, an error most likely related to study differences in feed intake, animals, and methodology. Predicting milk protein yield from uCP supply showed a positive relationship using a mixed model (coefficient of determination = 0.79), and we observed no difference in model fit between the time points of incubation (16, 20, or 24 h). The results of this study indicate that the in vitro method can be a useful tool in evaluating protein value of ruminant diets.


Asunto(s)
Bovinos/metabolismo , Duodeno/metabolismo , Proteínas de la Leche/metabolismo , Omaso/metabolismo , Proteínas de Plantas/metabolismo , Amoníaco/análisis , Amoníaco/metabolismo , Animales , Dieta/veterinaria , Duodeno/química , Femenino , Lactancia , Leche/química , Leche/metabolismo , Proteínas de la Leche/análisis , Proteínas de Plantas/análisis , Poaceae/metabolismo , Rumen/química , Rumen/metabolismo , Ensilaje/análisis , Trifolium/metabolismo
12.
Animal ; 9(12): 1958-69, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26165388

RESUMEN

The effects of rapeseed and soya bean expeller (SBE) supplementation on digestion and milk production responses in dairy cows were investigated in an incomplete Latin square design using five cows and four 3-week periods. The experimental diets consisted of five concentrate treatments fed at a rate of 9 kg/day: a mixture of barley and oats, which was replaced with rapeseed or SBE at two levels (CP concentration (g/kg dry matter (DM)) of 130 for the control concentrate and 180 and 230 for the two protein supplemented levels). A mixture of grass and red clover silage (1:1) was fed ad libitum and it had a CP concentration of 157 g/kg DM. Supply of nutrients to the lower tract was measured using the omasal canal sampling technique, and total digestion from total faecal collection. Protein supplementation increased omasal canal amino acid (AA) flows and plasma concentrations of AA, and was also reflected as increased milk production. However, N use efficiency (NUE) decreased with increased protein supplementation. Rapeseed expeller (RSE) tended to increase silage DM intake and elicited higher milk production responses compared with SBE and also resulted in a higher NUE. The differences between the protein supplements in nitrogen metabolism were relatively small, for example, there were no differences in the efficiency of microbial protein synthesis or omasal canal flows of nitrogenous components between them, but plasma methionine concentration was lower for soya bean-fed cows at the high CP level in particular. The lower milk protein production responses to SBE than to RSE supplementation were at least partly caused by increased silage DM and by the lower methionine supply, which may further have been amplified by the use of red clover in the basal diet. Although feed intake, diet digestion, AA supply and milk production were all consistently improved by protein supplementation, there was a simultaneous decrease in NUE. In the current study, the milk protein production increased only 9% and energy-corrected milk production by 7% when high level of protein supplementation (on average 2.9 kg DM/day) was compared with the control diet without protein supplementation showing that dairy production could be sustained at a high level even without external protein supplements, at least in the short term. The economic and environmental aspects need to be carefully evaluated when decisions about protein supplementation for dairy cows are taken.


Asunto(s)
Brassica rapa/metabolismo , Bovinos/fisiología , Suplementos Dietéticos , Glycine max/metabolismo , Proteínas de la Leche/metabolismo , Ensilaje/análisis , Aminoácidos/metabolismo , Animales , Avena , Biomasa , Dieta/veterinaria , Digestión , Femenino , Hordeum , Nitrógeno/metabolismo , Omaso/metabolismo , Poaceae , Trifolium
13.
J Dairy Sci ; 98(8): 5653-71, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26094222

RESUMEN

The potential of dietary fish oil (FO) supplements to increase milk 20:5n-3 and 22:6n-3 concentrations and the associated effects on milk fatty acid (FA) composition, intake, and milk production were examined. Four multiparous lactating cows offered a grass silage-based diet (forage:concentrate ratio 58:42, on a dry matter basis) supplemented with 0, 75, 150, or 300g of FO/d (FO0, FO75, FO150, and FO300, respectively) were used in a 4×4 Latin square with 28-d experimental periods. Milk FA composition was analyzed by complementary silver-ion thin-layer chromatography, gas chromatography-mass spectrometry, and silver-ion HPLC. Supplements of FO decreased linearly dry matter intake, yields of energy-corrected milk, milk fat and protein, and milk fat content. Compared with FO0, milk fat content and yield were decreased by 30.1 and 40.6%, respectively, on the FO300 treatment. Supplements of FO linearly increased milk 20:5n-3 and 22:6n-3 concentrations from 0.07 to 0.18 and 0.03 to 0.10g/100g of FA, respectively. Enrichment of 20:5n-3 and 22:6n-3 was accompanied by decreases in 4- to 18-carbon saturated FA and increases in total conjugated linoleic acid (CLA), trans FA, and polyunsaturated FA concentrations. Fish oil elevated milk fat cis-9,trans-11 CLA content in a quadratic manner, reaching a maximum on FO150 (from 0.61 to 2.15g/100g of FA), whereas further amounts of FO increased trans-10 18:1 with no change in trans-11 18:1 concentration. Supplements of FO also resulted in a dose-dependent appearance of 37 unique 20- and 22-carbon intermediates in milk fat. Concentrations of 16-, 18-, 20-, and 22-carbon trans FA were all increased by FO, with enrichment of trans 18:1 and trans 18:2 being quantitatively the most important. Decreases in milk fat yield to FO were not related to changes in milk trans-10,cis-12 CLA concentration or estimated milk fat melting point. Partial least square regression analysis indicated that FO-induced milk fat depression was associated with changes in the concentrations of multiple FA in milk. Even though a direct cause and effect could not be established, a decrease in 18:0 supply in combination with increased mammary uptake of cis-11 18:1, trans-10 18:1, and trans 20- and 22-carbon FA may contribute. In conclusion, dietary FO supplements enrich 20:5n-3 and 22:6n-3 in milk, but also elevate mono- and polyenoic trans FA concentrations, and in high amounts alter the distribution of individual trans FA isomers.


Asunto(s)
Bovinos/fisiología , Dieta/veterinaria , Ácidos Grasos/análisis , Aceites de Pescado/administración & dosificación , Lactancia , Leche/química , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Suplementos Dietéticos , Grasas/análisis , Ácidos Grasos/metabolismo , Femenino , Fermentación , Ácidos Linoleicos Conjugados/análisis , Omaso/metabolismo , Poaceae/metabolismo , Rumen/metabolismo , Rumen/microbiología , Ensilaje
14.
J Dairy Sci ; 96(8): 5267-89, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23769378

RESUMEN

The effects of forage conservation method on plasma lipids, mammary lipogenesis, and milk fat were examined in 2 complementary experiments. Treatments comprised fresh grass, hay, or untreated (UTS) or formic acid treated silage (FAS) prepared from the same grass sward. Preparation of conserved forages coincided with the collection of samples from cows fed fresh grass. In the first experiment, 5 multiparous Finnish Ayrshire cows (229 d in milk) were used to compare a diet based on fresh grass followed by hay during 2 consecutive 14-d periods, separated by a 5-d transition during which extensively wilted grass was fed. In the second experiment, 5 multiparous Finnish Ayrshire cows (53 d in milk) were assigned to 1 of 2 blocks and allocated treatments according to a replicated 3×3 Latin square design, with 14-d periods to compare hay, UTS, and FAS. Cows received 7 or 9 kg/d of the same concentrate in experiments 1 and 2, respectively. Arterial concentrations of triacylglycerol (TAG) and phospholipid were higher in cows fed fresh grass, UTS, and FAS compared with hay. Nonesterified fatty acid (NEFA) concentrations and the relative abundance of 18:2n-6 and 18:3n-3 in TAG of arterial blood were also higher in cows fed fresh grass than conserved forages. On all diets, TAG was the principle source of fatty acids (FA) for milk fat synthesis, whereas mammary extraction of NEFA was negligible, except during zero-grazing, which was associated with a lower, albeit positive calculated energy balance. Mammary FA uptake was higher and the synthesis of 16:0 lower in cows fed fresh grass than hay. Conservation of grass by drying or ensiling had no influence on mammary extraction of TAG and NEFA, despite an increase in milk fat secretion for silages compared with hay and for FAS than UTS. Relative to hay, milk fat from fresh grass contained lower 12:0, 14:0, and 16:0 and higher S3,R7,R11,15-tetramethyl-16:0, cis-9 18:1, trans-11 18:1, cis-9,trans-11 18:2, 18:2n-6, and 18:3n-3 concentrations. Even though conserved forages altered mammary lipogenesis, differences in milk FA composition were relatively minor, other than a higher enrichment of S3,R7,R11,15-tetramethyl-16:0 in milk from silages compared with hay. In conclusion, differences in milk fat composition on fresh grass relative to conserved forages were associated with a lower energy balance, increased uptake of preformed FA, and decreased synthesis of 16:0 de novo in the mammary glands, in the absence of alterations in stearoyl-coenzyme A desaturase activity.


Asunto(s)
Bovinos/fisiología , Dieta/veterinaria , Ácidos Grasos/análisis , Lactancia/fisiología , Lípidos/sangre , Lipogénesis/fisiología , Glándulas Mamarias Animales/metabolismo , Leche/química , Alimentación Animal , Animales , Bovinos/sangre , Bovinos/metabolismo , Femenino , Lactancia/efectos de los fármacos , Lipogénesis/efectos de los fármacos , Glándulas Mamarias Animales/fisiología
15.
J Dairy Sci ; 96(4): 2428-2447, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23375967

RESUMEN

The effect of forage conservation method on ruminal lipid metabolism and microbial ecology was examined in 2 complementary experiments in cows. Treatments comprised fresh chopped grass, barn-dried hay, or untreated (UTS) or formic acid-treated silage (FAS) prepared from the same grass sward. Preparation of conserved forages coincided with the collection of samples from cows offered fresh grass. In the first experiment, 5 multiparous Finnish Ayrshire cows (229 d in milk) were used to compare the effects of feeding diets based on grass followed by hay during 2 consecutive 14-d periods separated by a 5-d transition during which extensively wilted grass was fed. In the second experiment, 5 multiparous Finnish Ayrshire cows (53 d in milk) were assigned to 1 of 2 blocks and allocated treatments according to a replicated 3×3 Latin square design with 14-d periods to compare the effects of hay, UTS, and FAS. Cows received 7 or 9 kg/d of the same concentrate in experiments 1 and 2, respectively. Conservation of grass by drying, but not ensiling, decreased forage fatty acid content primarily due to losses of 18:2n-6 and 18:3n-3. Compared with grass, feeding hay had no effect on dry matter intake (DMI), rumen pH, or fermentation characteristics, other than increasing ammonia content, but lowered whole-tract organic matter and fiber digestibility (experiment 1). Relative to hay, silage increased DMI, rumen volatile fatty acid (VFA) concentrations, and molar proportions of butyrate, and decreased molar acetate proportions (experiment 2). Compared with UTS, FAS increased DMI, had no effect on rumen ammonia or VFA concentrations, but tended to lower rumen pH and the molar ratio of lipogenic to glucogenic VFA. Conservation method had no substantial effect on ruminal or whole-tract digestibility coefficients. Compared with fresh grass and silages, hay decreased lipolysis and biohydrogenation (BH) of dietary unsaturates in the rumen, resulting in similar flows of 18:2n-6 and 18:3n-3, but lower amounts of trans-11 18:1 and Δ11,13 18:2 at the omasum. The extent of silage fermentation had minimal influence on ruminal lipid metabolism. Treatments were not associated with changes in the relative abundance of specific bacteria known to be capable of BH or rumen protozoal numbers. In conclusion, conservation method altered forage lipids, the extent of lipolysis and BH in the rumen, and the flow of fatty acids at the omasum, in the absence of substantial changes in ruminal Butyrivibrio populations.


Asunto(s)
Bovinos/metabolismo , Dieta/veterinaria , Metabolismo de los Lípidos , Rumen/microbiología , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Carga Bacteriana , Butyrivibrio , Bovinos/microbiología , Digestión , Ácidos Grasos , Ácidos Grasos Volátiles/análisis , Femenino , Fermentación , Concentración de Iones de Hidrógeno , Lactancia , Lipólisis , Poaceae , Rumen/química , Rumen/parasitología , Ensilaje
16.
J Dairy Sci ; 96(1): 440-50, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23127902

RESUMEN

Accurate quantitative information on the fate of dietary protein in the rumen is central to modern metabolizable protein systems developed to improve the efficiency of nitrogen utilization in ruminants. An in vitro method was developed to estimate the rate of soluble rapeseed meal (Brassica rapa L.) protein (SRMP) degradation. Unlabeled and (15)N-labeled solvent-extracted rapeseed meal were incubated alone or as an equal mixture (125 mg of N/L) with buffered rumen contents and a mixture of carbohydrates formulated to provide a constant source of fermentable energy during the course of all incubations. Incubations were made over 0.33, 0.67, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 6.0, 8.0, and 10.0 h. Enrichment of (14)N and (15)N isotopes in total N of ammonia (AN), soluble nonammonia (SNAN), and insoluble (ISN) fractions liberated during incubations with test proteins was determined. A model with 4 pools that accounted for both intracellular and extracellular N transformations was used to estimate the rate of SRMP degradation. Parameter values used in the model were adjusted based on the size of A(14)N, A(15)N, SNA(14)N, SNA(15)N, IS(14)N, and IS(15)N pools, measured at different time points during incubations with buffered rumen fluid. The mean rate of N degradation for SRMP was estimated at 0.126 (SD 0.0499) h(-1). No substantive difference in the rate of protein degradation or microbial protein synthesis was observed during incubations of labeled and unlabeled substrates with rumen fluid. In conclusion, combined use of data from incubations of unlabeled and (15)N-labeled rapeseed protein with buffered rumen inoculum provided sufficient information to allow for estimation of parameter values in a complex dynamic model of soluble protein degradation. Results indicate the potential of the technique to evaluate the degradability of SNAN of other dietary protein sources and implicate ruminal escape of soluble rapeseed protein as an important source of amino acids in ruminants.


Asunto(s)
Brassica rapa , Proteínas de Vegetales Comestibles/metabolismo , Rumen/fisiología , Aminoácidos/metabolismo , Fenómenos Fisiológicos Nutricionales de los Animales/fisiología , Animales , Bovinos , Contenido Digestivo , Técnicas In Vitro , Nitrógeno/metabolismo , Rumen/metabolismo , Factores de Tiempo
17.
J Dairy Sci ; 95(3): 1376-94, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22365221

RESUMEN

Dietary unsaturated fatty acids are extensively hydrogenated in the rumen, resulting in the formation of numerous intermediates that may exert physiological effects and alter the fat composition of ruminant-derived foods. A batch culture method was used to characterize the hydrogenation of linoleic acid (LeA) by strained rumen fluid in vitro. Incubations (n = 5) were performed in 100-mL flasks maintained at 39 °C containing 400mg of grass hay, 50 mL of buffered rumen fluid, and incremental amounts of LeA (0, 1.0, 2.5, 5.0, or 10.0mg) for 0, 1.5, 3.0, 4.5, 6.0, and 9.0 h. The fatty acid composition of flask contents was determined using complimentary silver-ion thin-layer chromatography, gas chromatography mass-spectrometry, and silver-ion high-performance liquid chromatography. Linoleic acid was extensively (98.1, 97.6, 98.0, and 89.8% for additions of 1.0, 2.5, 5.0, and 10.0mg of LeA, respectively) hydrogenated over time. Complete reduction of LeA to 18:0 was inhibited in direct relation to the amount of added substrate, the extent of which was greatest for the highest amount of LeA addition. Recoveries of 1.0, 2.5, 5.0, and 10.0mg of added LeA as 18:0 averaged 73.6, 65.0, 57.3, and 10.7%, respectively. Incubation of incremental amounts of LeA resulted in a time-dependent accumulation of geometric isomers of 9,11 and 10,12 conjugated linoleic acid, several nonconjugated 18:2 isomers, and a wide range of cis 18:1 and trans 18:1 intermediates. Several unusual intermediates including cis-6,cis-12 18:2; cis-7,cis-12 18:2; and cis-8,cis-12 18:2, were found to accumulate in direct relation to the amount of added LeA, providing the first indications that hydrogenation of LeA by ruminal bacteria may also involve mechanisms other than hydrogen abstraction or isomerization of the cis-12 double bond. Fitting of single-pool, first-order kinetic models to experimental data indicated that the rate of LeA disappearance decreased with increases in substrate availability. Reduction of 18:1 and 18:2 intermediates occurred at much lower rates compared with conjugated linoleic acid and nonconjugated 18:2 isomer formation. In conclusion, the extent of LeA biohydrogenation in vitro was shown to be time- and dose-dependent with evidence that LeA is hydrogenated by ruminal bacteria via several distinct metabolic pathways. The accumulation of several unusual 18:2 isomers indicates that biohydrogenation of LeA also proceeds via mechanisms other than isomerization of the cis-12 double bond.


Asunto(s)
Ácido Linoleico/metabolismo , Rumen/metabolismo , Animales , Líquidos Corporales/metabolismo , Bovinos , Ácidos Grasos/metabolismo , Ácidos Grasos Insaturados/metabolismo , Concentración de Iones de Hidrógeno , Hidrogenación , Técnicas In Vitro , Ácidos Linoleicos Conjugados/metabolismo , Ácidos Esteáricos/metabolismo
18.
J Dairy Sci ; 93(12): 5890-901, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21094762

RESUMEN

A meta-analysis of studies using the flux/compartmental pool method with indigestible neutral detergent fiber (iNDF) as internal marker was conducted to study the effect of extrinsic characteristics and forage type on particle passage rate (k(p)) in cattle. Further, the k(p) prediction equations in the National Research Council (NRC) and the Cornell Net Carbohydrate and Protein System (CNCPS) were evaluated. Data comprised 172 treatment means from 49 studies conducted in Europe and the United States. In total, 145 diets were fed to dairy cows and 27 to growing cattle. A prerequisite for inclusion of an experiment was that dry matter intake, neutral detergent fiber (NDF), proportion of concentrate in the diet, body weight, and diet chemical composition were determined or could be estimated. Mixed model regression analysis including a random study effect was used to generate prediction equations of k(p) and to investigate the relationships between NRC and CNCPS predictions and observed k(p) of iNDF. Prediction equations were evaluated by regressing residual values on the predicted values. The best-fit model when forage type was not included was k(p) (%/h) = 1.19+0.0879 × NDF intake (g/kg of body weight)+0.792 × proportion of concentrate NDF of total NDF+1.21 × diet iNDF:NDF ratio (adjusted residual mean square error = 0.23%/h). The best general equation accounting for an effect of forage type was as follows: k(p) (%/h) = F+1.54+0.0866 × NDF intake (g/kg of body weight) (adjusted residual mean square error = 0.21%/h), where F is the forage adjustment factor of the intercept. The value of F for grass silage, fresh grass, mixes of alfalfa and corn silage, and dry or ensiled alfalfa as sole forage component were 0.00, -0.91, +0.83, and +0.24, respectively. Relationships between predicted and observed k(p) were y = 0.53(± 0.187)+0.41( ± 0.0373) × predicted k(p) and y = 0.58(± 0.162)+0.46(± 0.0377) × predicted k(p) for the NRC and CNCPS models, respectively. Residual analysis of the NRC and CNCPS models resulted in both significant mean biases (observed--predicted) of -2.40 and -1.70% and linear biases of -0.59 and -0.53, respectively. The results from this meta-analysis suggest that ruminal particulate matter k(p) is affected by forage type in the diet. Further, the evaluation of NRC and CNCPS models showed that passage rate equations developed from marker excretion curves markedly deviated from observed k(p) of iNDF derived using the rumen evacuation technique.


Asunto(s)
Alimentación Animal , Bovinos/fisiología , Tránsito Gastrointestinal/fisiología , Rumen/fisiología , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Sesgo , Fibras de la Dieta/metabolismo , Investigación Empírica , Modelos Biológicos , Análisis de Regresión , Rumen/metabolismo
19.
J Dairy Sci ; 93(7): 3203-15, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20630237

RESUMEN

A data set from 32 studies (122 diets) was used to evaluate the accuracy and precision of the omasal sampling technique by investigating the relationships between ruminal and total digestion of neutral detergent fiber (NDF), between intake and apparent and true ruminal digestion of organic matter (OM), and between omasal NAN flow and milk protein yield. A mixed model regression analysis with random study effect was used to evaluate the relationships. The data were obtained when feeding North American diets (n=36) based on alfalfa silage, corn silage, and corn grain and North European diets (n=86) comprising grass silage supplemented with barley-based concentrates. In all studies, digesta flow was quantified using a triple-marker approach. Standard deviations of ruminal NDF and true OM digestibility were smaller than typically reported in duodenal sampling studies using only chromic oxide as a flow marker. The relationship between total and ruminal NDF digestion was consistent, indicating little variation in the proportion of total-tract NDF digestion that occurred in the rumen. Furthermore, the slope of this regression indicated that 94.7% (+/-2.7%) of total NDF digestion occurred in the rumen. The slopes of mixed model regression equations between OM intake and amount digested indicated that 42% (+/-2.4%) and 74% (+/-3.1%) of OM was apparently and truly digested in the rumen, respectively. The contribution of the rumen to total-tract apparent OM digestion was 62% (+/-2.6%). The close relationship between omasal flow of nonammonia crude protein and milk protein yield (with adjusted residual mean squared error=31 g) provided further confidence in the reliability of omasal flow measurements.


Asunto(s)
Alimentación Animal/análisis , Industria Lechera/métodos , Fibras de la Dieta/metabolismo , Digestión/fisiología , Omaso/metabolismo , Rumen/metabolismo , Animales , Bovinos , Proteínas en la Dieta/metabolismo , Femenino , Contenido Digestivo/química , Leche/química , Proteínas de la Leche/análisis , Análisis de Regresión , Almidón/metabolismo
20.
J Dairy Sci ; 93(7): 3216-30, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20630238

RESUMEN

Mixed model analysis of data from 32 studies (122 diets) was used to evaluate the precision and accuracy of the omasal sampling technique for quantifying ruminal-N metabolism and to assess the relationships between nonammonia-N flow at the omasal canal and milk protein yield. Data were derived from experiments in cattle fed North American diets (n=36) based on alfalfa silage, corn silage, and corn grain and Northern European diets (n=86) composed of grass silage and barley-based concentrates. In all studies, digesta flow was quantified using a triple-marker approach. Linear regressions were used to predict microbial-N flow to the omasum from intake of dry matter (DM), organic matter (OM), or total digestible nutrients. Efficiency of microbial-N synthesis increased with DM intake and there were trends for increased efficiency with elevated dietary concentrations of crude protein (CP) and rumen-degraded protein (RDP) but these effects were small. Regression of omasal rumen-undegraded protein (RUP) flow on CP intake indicated that an average 32% of dietary CP escaped and 68% was degraded in the rumen. The slope from regression of observed omasal flows of RUP on flows predicted by the National Research Council (2001) model indicated that NRC predicted greater RUP supply. Measured microbial-N flow was, on average, 26% greater than that predicted by the NRC model. Zero ruminal N-balance (omasal CP flow=CP intake) was obtained at dietary CP and RDP concentrations of 147 and 106 g/kg of DM, corresponding to ruminal ammonia-N and milk urea N concentrations of 7.1 and 8.3mg/100mL, respectively. Milk protein yield was positively related to the efficiency of microbial-N synthesis and measured RUP concentration. Improved efficiency of microbial-N synthesis and reduced ruminal CP degradability were positively associated with efficiency of capture of dietary N as milk N. In conclusion, the results of this study indicate that the omasal sampling technique yields valuable estimates of RDP, RUP, and ruminal microbial protein supply in cattle.


Asunto(s)
Bovinos/metabolismo , Industria Lechera/métodos , Nitrógeno/metabolismo , Omaso/metabolismo , Rumen/metabolismo , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Proteínas en la Dieta/metabolismo , Femenino , Leche/química , Proteínas de la Leche/análisis , Omaso/microbiología , Rumen/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...