Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Behav Processes ; 216: 105013, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38460912

RESUMEN

Social hierarchy is a crucial element for survival, reproduction, fitness, and the maintenance of a stable social group in social animals. This study aimed to investigate the physiological indicators, nociception, unfamiliar female mice preference, spatial learning memory, and contextual fear memory of male mice with different social status in the same cage. Our findings revealed significant differences in the trunk temperature and contextual fear memory between winner and loser mice. However, there were no major discrepancies in body weight, random and fasting blood glucose levels, whisker number, frontal and perianal temperature, spleen size, mechanical and thermal pain thresholds, preference for unfamiliar female mice, and spatial memory. In conclusion, social status can affect mice in multiple ways, and, therefore, its influence should be considered when conducting studies using these animals.


Asunto(s)
Agresión , Conducta Animal , Ratones , Masculino , Femenino , Animales , Agresión/fisiología , Conducta Animal/fisiología , Aprendizaje , Predominio Social , Cognición
2.
Free Radic Biol Med ; 210: 54-64, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37979890

RESUMEN

Social isolation has emerged as a significant issue during the COVID-19 pandemic that can adversely impact human mental health and potentially lead to pathological aggression. Given the lack of effective therapeutic interventions for aggressive behavior, alternative approaches are necessary. In this study, we utilized a genetic method combined with a pharmacological approach to identify and demonstrate the crucial role of Cdk5 in escalated intermale attack behavior induced by 2-week social isolation. Moreover, we developed a small peptide that effectively disrupts the interaction between Cdk5 and GluN2B, given the known involvement of this complex in various neuropsychiatric disorders. Administration of the peptide, either systemically or via intrahippocampal injection, significantly reduced oxidative stress in the hippocampus and attenuated intermale attack behavior induced by 2-week social isolation. These findings highlight the previously unknown role of the hippocampal Cdk5-GluN2B complex in social isolation-induced aggressive behavior in mice and propose the peptide as a promising therapeutic strategy for regulating attack behavior and oxidative stress.


Asunto(s)
Hipocampo , Pandemias , Ratones , Animales , Humanos , Aislamiento Social , Agresión/fisiología , Péptidos/farmacología
3.
Int J Biol Macromol ; 253(Pt 5): 127158, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37802442

RESUMEN

Glucose regulatory protein 94 (GRP94) is an endoplasmic reticulum (ER)-resident member of the heat shock protein 90 (HSP90) family, that plays an important role in secreted protein folding. Bombyx mori nuclear polyhedrosis virus (BmNPV) is one of the main pathogens in sericulture, causing serious economic losses every year. Previous studies showed that HSP90 members promote BmNPV replication in silkworm, but the function of BmGRP94 in BmNPV infection and proliferation is still not understood. In this study, we investigated the interplay between BmGRP94 and BmNPV infection in silkworm. We first identified a single gene of BmGRP94 in the Bombyx mori genome, which encodes a polypeptide with 810 amino acids in length. Spatio-temporal expression profiles showed that BmGRP94 was highly expressed in hemocytes and midgut, and was significantly induced by BmNPV infection. Furthermore, overexpression of BmGRP94 facilitates viral proliferation, while BmGRP94 inhibition evidently decreased BmNPV proliferation in BmN cells and in silkworm midgut. Mechanistically, BmGRP94 inhibition triggers ER stress, as judged by increased expression of PERK/ATF4/ERO1, H2O2 production, and ER calcium efflux, which promotes cell apoptosis to restrict BmNPV replication in silkworm. These results suggest that BmGRP94 plays an important role in facilitating BmNPV proliferation, and provides a potential molecular target for BmNPV prevention.


Asunto(s)
Bombyx , Nucleopoliedrovirus , Animales , Nucleopoliedrovirus/fisiología , Peróxido de Hidrógeno/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Bombyx/metabolismo , Apoptosis/genética , Proliferación Celular , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo
4.
Biochem Biophys Res Commun ; 675: 162-169, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37478772

RESUMEN

The Ubiquitin (Ub)-like molecules is essential for animal development and the physiopathology of multiple tissues in the vertebrate. Ubiquitin-fold modifier 1 (UFM1) is one of the newly-identified UBL, which is covalently attached to its substrates through the orchestrated action of a dedicated enzymatic cascade. Bombyx mori nuclear polyhedrosis virus (BmNPV) is one of the main pathogens in sericulture, causing serious economic losses every year. However, there are no studies on UFMylation and the effect of UFMylation on BmNPV replication in silkworm. In this study, we identified BmUFM1 in the B. mori genome. Spatio-Temporal expression profiles showed that BmUFM1 expression was highly in hemocytes and response to various pathogenic stimuli. Furthermore, BmUFM1 is involved in the regulation of ER stress induced Unfolded Protein Response (UPR) and knockdown of BmUFM1 inhibited BmNPV replication. Overall, these results suggest that BmUFM1 plays an important role in facilitating BmNPV proliferation in silkworm. Our findings advance the understanding of UFM1's conjugation machinery, and also provides a potentially molecular target for BmNPV prevention and silkworm breeding.


Asunto(s)
Bombyx , Nucleopoliedrovirus , Animales , Bombyx/metabolismo , Nucleopoliedrovirus/genética , Nucleopoliedrovirus/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Ubiquitinas/metabolismo
5.
Biochem Biophys Res Commun ; 665: 118-123, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37156049

RESUMEN

The process of memory consolidation involves the synthesis of new proteins, and interfering with protein synthesis through anisomycin can impair memory. Memory deficits due to aging and sleep disorders may also result from a reduction in protein synthesis. Rescuing memory deficits caused by protein synthesis deficiency is therefore an important issue that needs to be addressed. Our study focused on the effects of cordycepin on fear memory deficits induced by anisomycin using contextual fear conditioning. We observed that cordycepin was able to attenuate these deficits and restore BDNF levels in the hippocampus. The behavioral effects of cordycepin were dependent on the BDNF/TrkB pathway, as demonstrated by the use of ANA-12. Cordycepin had no significant impact on locomotor activity, anxiety or fear memory. Our findings provide the first evidence that cordycepin can prevent anisomycin-induced memory deficits by regulating BDNF expression in the hippocampus.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Miedo , Humanos , Anisomicina/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Miedo/fisiología , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/metabolismo , Hipocampo/metabolismo
6.
J Cancer ; 12(1): 76-88, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33391404

RESUMEN

Background: Triple-negative breast cancer (TNBC) is a great threat to global women's health due to its high metastatic potential. Epithelial-to-mesenchymal transition (EMT) is considered as a key event in the process of metastasis. So the pharmacological targeting of EMT might be a promising strategy in improving the therapeutic efficacy of TNBC. Here, we investigated the effect of shikonin exerting on EMT and consequently the metastasis of TNBC cells and its underlying mechanism. Methods: The invasive and migratory capacities of MDA-MB-231 and BT549 cells were tested using transwell invasion and wound healing assay. MiR-17-5p expression was examined by qRT-PCR. MiR-17-5p targeted genes were predicted with different bioinformatic algorithms from four databases (TargetScan, miRanda, PITA and picTar) and further screened by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The differential expressions of predicted genes and their correlations with miR-17-5p were identified in breast cancer patients based on The Cancer Genome Atlas (TCGA) database. The interaction between phosphatase and tensin homolog deleted on chromosome ten (PTEN) and miR-17-5p was analyzed by luciferase reporter assay. The overexpression vector and small interfering RNA were constructed to investigate the role PTEN played in metastasis and EMT regulation. The expressions of EMT markers, protein kinase B (Akt) and phospho-Akt (p-Akt) were evaluated by western blot. Results: Shikonin suppressed the migration and invasion of MDA-MB-231 and BT549 cells and meanwhile the corresponding alterations of EMT biomarkers were observed in shikonin treated MDA-MB-231 cells. Shikonin inhibited the expression of miR-17-5p, which was upregulated in breast cancer. The 3'-untranslated region (3'-UTR) of PTEN was found to be direct binding target of miR-17-5p by luciferase reporter assays. PTEN functioned as a suppressor both in the metastasis and EMT of TNBC cells. Moreover, Akt and p-Akt (Ser473) were involved in the process of inhibition in cancer cell migration, invasion and EMT by shikonin. Conclusions: Shikonin inhibits migration and invasion of TNBC cells by suppressing EMT via miR-17-5p/PTEN/Akt pathway. This suggests shikonin as a promising therapeutic agent to counteract metastasis in the TNBC patients.

7.
J Biol Chem ; 295(29): 10023-10031, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32499374

RESUMEN

Homeostatic scaling of the synapse, such as synaptic down-scaling, has been proposed to offset deleterious effects induced by sustained synaptic strength enhancement. Proper function and subcellular distribution of Src homology 2 domain-containing nonreceptor protein tyrosine phosphatase (SHP2) are required for synaptic plasticity. However, the role of SHP2 in synaptic down-scaling remains largely unknown. Here, using biochemical assays and cell-imaging techniques, we found that synaptic SHP2 levels are temporally regulated during synaptic down-scaling in cultured hippocampal neurons. Furthermore, we observed that a Noonan syndrome-associated mutation of SHP2, resulting in a D61G substitution, prevents synaptic down-scaling. We further show that this effect is due to an inability of the SHP2-D61G variant to properly disassociate from postsynaptic density protein 95, leading to impaired SHP2 dispersion from synaptic sites after synaptic down-scaling. Our findings reveal a molecular mechanism of the Noonan syndrome-associated genetic variant SHP2-D61G that contributes to deficient synaptic down-scaling.


Asunto(s)
Mutación Missense , Síndrome de Noonan/enzimología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Sinapsis/metabolismo , Sustitución de Aminoácidos , Animales , Homólogo 4 de la Proteína Discs Large/genética , Homólogo 4 de la Proteína Discs Large/metabolismo , Ratones , Síndrome de Noonan/genética , Síndrome de Noonan/patología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Sinapsis/genética , Sinapsis/patología
8.
Neuroscience ; 433: 144-155, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32194228

RESUMEN

Synaptic plasticity, such as long term potentiation (LTP) and long term depression (LTD), underlies the cellular mechanism of learning and memory. Chemical-induced LTP (cLTP), which facilitates biochemical analysis of molecular changes in brain slices or neuronal cultures, has been accepted as an in vitro model to explore synaptic plasticity. cLTP, by either forskolin and rolipram (F&R) or glycine, is thought to be dependent on NMDA receptor. However, subunit-specific dependence and regulation of the NMDA receptor in cLTP remain poorly understood. In the present study, we found that phosphorylation level of GluN2B at tyrosine 1472 was modulated by F&R-induced LTP but not by glycine-induced LTP in hippocampal slices. Furthermore, an increased phosphorylation level of GluA1 at serine 845 by F&R-induced LTP rather than glycine-induced LTP was dependent on the activation of GluN2B, which is supported by the results from GluN2B antagonists, small interfering peptide and CRISPR-Cas9-mediated knock out of GluN2B. Taken together, we reveal the significant role of GluN2B in F&R-induced LTP, uncovering the role of GluN2B subunit of NMDA receptor in a specified cLTP.


Asunto(s)
Potenciación a Largo Plazo , Receptores de N-Metil-D-Aspartato , Hipocampo/metabolismo , Fosforilación , Receptores AMPA , Receptores de N-Metil-D-Aspartato/metabolismo , Serina
9.
Aging Dis ; 11(1): 31-43, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32010479

RESUMEN

Depression is one of the most prevalent neuropsychiatric disorders in modern society. However, traditional drugs, such as monoaminergic agents, have defect showing lag response requiring several weeks to months. Additionally, these drugs have limited efficacy and high resistance rates in patients with depression. Thus, there is an urgent need to develop novel drugs or approaches for the treatment of depression. Here, using biochemical, pharmacological, genetic and behavioral methods, we demonstrate that metformin imparts a fast-acting antidepressant-like effect in naïve mice as well as stressed mice subjected to chronic restraint stress model. Moreover, inhibition of AMP-activated protein kinase (AMPK) activity by compound C or knock down of hippocampal AMPKα occluded the antidepressant-like effect induced by metformin. Our results suggest that metformin may be a viable therapeutic drug for the treatment of stress-induced depression via activation of AMPK.

10.
Front Neurosci ; 13: 102, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30809120

RESUMEN

Ischemic stroke places an increasing burden on individuals, families, and societies around the world. However, effective therapies or drugs for ischemic stroke are lacking. Therefore, animal models mimicking ischemic stroke in humans are of great value for preclinical experiments. middle cerebral artery occlusion (MCAO) in mice or rats and subsequent 2,3,5-triphenyltetrazolium chloride (TTC) staining of brain sections are common methods in the study of experimental animal ischemic stroke. In this study, we present and assess the utility of the semi-automated analysis of the TTC staining (SAT) software program, a novel, small, user-friendly, and free software program, in the quantification of the infarct size in rodent brain sections, with TTC staining, by analyzing images captured by cell phones or scan systems. We performed MCAO and TTC staining in adult mice. We then utilized the SAT software and Image J to analyze the infarct size in the brain sections with TTC staining and compared the findings of the two analysis methods. We found that the data on infarct size from SAT and from Image J were comparable, suggesting that the SAT software could be an alternative option to Image J in the evaluation of ischemic stroke.

11.
Neuroscience ; 351: 24-35, 2017 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-28359951

RESUMEN

Exposure to acute stress leads to diverse changes, which include either beneficial or deleterious effects on molecular levels that are implicated in stress-related disorders. N-methyl-d-aspartate receptor (NMDAR)-mediated signalings, are thought to be vital players in stress-related mental disorders as well as attractive therapeutic targets for clinical treatment. In the present study, we utilized acute stress models in mice to explore regulation of phosphorylation level of S1284 in GluN2B subunit of NMDAR. We found out that forced swimming and acute restraint stress increased phosphorylation level of S1284, while phosphorylation level of S1284 was unaltered after brief exposure to open field. Moreover, phosphorylation change of S1284 was negated by treatment of roscovitine which is believed to be a Cyclin-dependent kinase inhibitor. Besides, we showed well correlation of phosphorylation change of S1284 and immobility time during forced swimming. Collectively, our results demonstrated that phosphorylation level of S1284 in GluN2B was regulated by acute stress.


Asunto(s)
Hipocampo/metabolismo , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Estrés Fisiológico/fisiología , Animales , Masculino , Ratones Endogámicos C57BL , Fosforilación , Condicionamiento Físico Animal , Transducción de Señal/efectos de los fármacos , Lóbulo Temporal/metabolismo
12.
J Biol Chem ; 290(38): 22945-54, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26229100

RESUMEN

The number and subunit composition of synaptic N-methyl-d-aspartate receptors (NMDARs) play critical roles in synaptic plasticity, learning, and memory and are implicated in neurological disorders. Tyrosine phosphorylation provides a powerful means of regulating NMDAR function, but the underling mechanism remains elusive. In this study we identified a tyrosine site on the GluN2B subunit, Tyr-1070, which was phosphorylated by a proto-oncogene tyrosine-protein (Fyn) kinase and critical for the surface expression of GluN2B-containing NMDARs. The phosphorylation of GluN2B at Tyr-1070 was required for binding of Fyn kinase to GluN2B, which up-regulated the phosphorylation of GluN2B at Tyr-1472. Moreover, our results revealed that the phosphorylation change of GluN2B at Tyr-1070 accompanied the Tyr-1472 phosphorylation and Fyn associated with GluN2B in synaptic plasticity induced by both chemical and contextual fear learning. Taken together, our findings provide a new mechanism for regulating the surface expression of NMDARs with implications for synaptic plasticity.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Plasticidad Neuronal/fisiología , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Receptores de N-Metil-D-Aspartato/biosíntesis , Sinapsis/metabolismo , Animales , Ratones , Ratones Noqueados , Fosforilación/fisiología , Proteínas Proto-Oncogénicas c-fyn/genética , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/genética , Sinapsis/genética , Tirosina/genética , Tirosina/metabolismo
13.
Exp Neurol ; 271: 251-8, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26093036

RESUMEN

N-methyl-D-aspartate receptors (NMDARs) are a key player in synaptic and several neurological diseases, such as stroke. Phosphorylation of NMDAR subunits at their cytoplasmic carboxyl termini has been considered to be an important mechanism to regulate the receptor function. Cyclin-dependent kinase 5 (Cdk5) has been demonstrated to be responsible for regulating phosphorylation and function of NMDARs. Besides, it is also suggested that Cdk5 is involved in ischemic insult. In the present study, we showed that GluN2B subunit serine 1284 at its cytoplasmic carboxyl termini was regulated by Cdk5 in neuronal ischemia. Interestingly, both oxygen glucose deprivation (OGD) in cultured hippocampal neurons and transient global ischemia in mice induce dramatic changes in the phosphorylated level of GluN2B at S1284. However, no significant changes in the phosphorylation of this site are found neither in chemical LTP stimulation in cultured hippocampal neurons nor fear conditioning in adult mice. Taken together, our study identified NMDAR GluN2B S1284 as a novel phosphorylation site regulated by Cdk5 with implication in neuronal ischemia.


Asunto(s)
Enfermedades de las Arterias Carótidas/metabolismo , Quinasa 5 Dependiente de la Ciclina/metabolismo , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Serina/metabolismo , Animales , Enfermedades de las Arterias Carótidas/patología , Células Cultivadas , Estimulantes del Sistema Nervioso Central/farmacología , Modelos Animales de Enfermedad , Embrión de Mamíferos , Glucosa/deficiencia , Hipocampo/citología , Hipoxia/metabolismo , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/fisiología , Masculino , Ratones , Neuronas/efectos de los fármacos , Fosforilación/efectos de los fármacos , Picrotoxina/farmacología , Densidad Postsináptica/metabolismo , Ratas
14.
J Cardiovasc Pharmacol ; 65(4): 349-56, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25502309

RESUMEN

Myocardial ischemia/reperfusion (I/R) injury in diabetes is associated with oxidative stress, endothelial nitric oxide synthase (eNOS) dysfunction, and mitochondrial collapse, whereas luteolin is known to protect the cardiovascular system against diabetes and I/R injury. Here, we investigated whether luteolin pretreatment diminishes myocardial I/R injury in diabetic rats by affecting eNOS and the mitochondrial permeability transition pore (mPTP). After diabetic rats were produced by streptozotocin treatment (65 mg/kg) for 3 weeks, luteolin (100 mg·kg·d) or L-NAME (25 mg·kg·d) was administered intragastrically for 2 weeks. Hearts were then isolated and subjected to 30 minutes of global ischemia followed by 120 minutes of reperfusion. Pretreatment with luteolin significantly improved left ventricular function and coronary flow throughout reperfusion, increased cardiac tissue viability and manganese superoxide dismutase (MnSOD) activity, and reduced coronary lactate dehydrogenase release, and the myocardial malonaldehyde level in diabetic I/R rat hearts. All these improving effects of luteolin were significantly attenuated by L-NAME. Luteolin also significantly upregulated eNOS expression in diabetic rat hearts after I/R. Ca-induced mPTP opening and mitochondrial inner membrane potential reduction were significantly inhibited in ventricular myocytes isolated from luteolin-treated diabetic rats, and this effect was attenuated by L-NAME. These findings indicate that luteolin protects the diabetic heart against I/R injury by upregulating the myocardial eNOS pathway, and downstream effects include the enhancement of MnSOD and inhibition of mPTP.


Asunto(s)
Membranas Intracelulares , Luteolina/farmacología , Mitocondrias Cardíacas/metabolismo , Daño por Reperfusión Miocárdica , Óxido Nítrico Sintasa de Tipo III/metabolismo , Estrés Oxidativo/efectos de los fármacos , Animales , Cardiotónicos/farmacología , Diabetes Mellitus Experimental/metabolismo , Modelos Animales de Enfermedad , Membranas Intracelulares/efectos de los fármacos , Membranas Intracelulares/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/metabolismo , Permeabilidad , Ratas , Ratas Sprague-Dawley
15.
Neurosci Bull ; 29(5): 614-20, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23585298

RESUMEN

Activation of N-methyl-D-aspartate receptors (NMDARs) mediates changes in the phosphorylation status of the glutamate receptors themselves. Previous studies have indicated that during synaptic activity, tyrosine kinases (Src and Fyn) or phosphatases (PTPα and STEP) are involved in regulating the phosphorylation of NMDARs. In this study, we used immunoblotting to investigate the role of an NMDAR subpopulation on the phosphorylation level of the GluN2B subunit at the Y1336 and Y1472 sites in rat brain slices after NMDA treatment. We found that NMDA stimulation dramatically decreased the phosphorylation level of GluN2B at Y1472 in a dose- and time-dependent manner, but not at Y1336. Extrasynaptic NMDAR activation did not reduce the phosphorylation of GluN2B at Y1472. In addition, ifenprodil, a selective antagonist of GluN2B-containing NMDARs, did not abolish the decreased phosphorylation of GluN2B at Y1472 triggered by NMDA. These results suggest that the activation of synaptic GluN2A-containing NMDARs is required for the decreased phosphorylation of GluN2B at Y1472 that is induced by NMDA treatment in rat brain slices.


Asunto(s)
Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Tirosina/metabolismo , Animales , Western Blotting , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Masculino , N-Metilaspartato/farmacología , Técnicas de Cultivo de Órganos , Fosforilación , Ratas , Ratas Sprague-Dawley , Sinapsis/metabolismo
16.
Neurosci Lett ; 497(2): 94-8, 2011 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-21539895

RESUMEN

AMPA receptors and NMDA receptors are the main subtypes of ionotropic glutamate receptors in the vertebrate central nervous system. Accumulating evidence demonstrates that two serine sites, S831 and S845, on the AMPA receptor GluA1 subunit, are phosphorylation-regulated and profoundly involved in NMDA receptor-dependent synaptic plasticity. On the other hand, recent studies have revealed distinct functional consequences of activating synaptic or extrasynaptic NMDA receptors, or of activating GluN2A- or GluN2B-containing NMDA receptors. Therefore, it is essential to determine how phosphorylation of the GluA1 at S831 and S845 is regulated by NMDA receptor subpopulations. In this study, we demonstrated transiently increased phosphorylation of GluA1 at S831 and persistently decreased phosphorylation of GluA1 at S845 by bath application of NMDA to hippocampal slices from rats. Interestingly, we also found a differential regulation of phosphorylation of GluA1 at S831 and S845 by activation of NMDA receptor subpopulations: the synaptic and/or the GluN2A-containing NMDA receptors were more likely to mediate up-regulation of GluA1 phosphorylation at S831 and down-regulation of GluA1 phosphorylation at S845, while the extrasynaptic NMDA receptors down-regulated GluA1 phosphorylation at S831. Taken together, our results suggest the NMDA receptor subpopulations differentially regulate GluA1 phosphorylation, which may contribute to NMDA receptor-dependent synaptic plasticity.


Asunto(s)
Hipocampo/fisiología , Receptor Cross-Talk/fisiología , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Serina/metabolismo , Animales , Dominio Catalítico/fisiología , Masculino , Técnicas de Cultivo de Órganos , Fosforilación/fisiología , Ratas , Ratas Sprague-Dawley , Receptores AMPA/química , Receptores de N-Metil-D-Aspartato/fisiología
17.
J Environ Sci (China) ; 17(4): 605-10, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16158588

RESUMEN

Enhanced UV-B (280 - 320 nm) radiation resulting from ozone depletion is one of global environmental problems. Not only marine organisms but also marine ecosystems can be affected by enhanced UV-B radiation. The effects of UV-B radiation on interaction of macro-algae and micro-algae were investigated using Ulva pertusa Kjellman and Alexandrium tamarense as the materials in this study. The results demonstrated that UV-B radiation could inhibit the growth of Ulva pertusa and Alexandrium tamarense when they were both mono-cultured, and the growth inhibition of algae was more significant with increasing doses of UV-B radiation. Alexandrium tamarense could inhibit the growth of Ulva pertusa in mixed culture, and the growth inhibition was more significant when increasing the initial cell density. However, Ulva pertusa could inhibit the growth of Alexandrium tamarense in early phase and stimulate the growth in latter phase when they were grown in mixed culture. Lower initial cell density (10(2) cell/ml) of Alexandrium tamarense could inhibit the growth of Ulva pertusa under UV-B radiation treatment, however, with the initial cell density increasing (10(3) and 10(4) cell/ml), the growth of Ulva pertusa was stimulated under lower dose of UV-B radiation and inhibited under higher dose of UV-B radiation by Alexandrium tamarense. Compared with that in mixed culture, Ulva pertusa showed more positive inhibition to the growth of Alexandrium tamarense under UV-B radiation treatment.


Asunto(s)
Dinoflagelados/efectos de la radiación , Rayos Ultravioleta , Ulva/efectos de la radiación , Animales , Dinoflagelados/crecimiento & desarrollo , Ulva/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...