Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 30(51): 110901-110912, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37796353

RESUMEN

Excessive phosphorus in water would cause eutrophication and deterioration of the ecological environment. Herein, the La-MOFs/Al2O3 composite was successfully prepared by the in situ hydrothermal synthesis method for granulation, which was conducive to exerting the phosphate adsorption capacity and facilitating practical application. The materials were characterized by SEM, EDX, XRD, BET, FTIR, and Zeta. In addition, the adsorption performance of La-MOFs/Al2O3 was evaluated through adsorption kinetics and isotherms, showing that the Langmuir adsorption capacity was 16.34 mgP·g-1 (25 °C) and increased with the water temperature. Moreover, the batch influence experiments of intimal pH, adsorbent dosage, coexisting ions, and stability tests were performed to analyze the potential for practical applications and verified through the natural micro-polluted water samples from Houxi River and Bailu Lake (China). The results indicated that the La-MOFs/Al2O3 was suited to a wide pH range of 4 to 10 and the phosphate removal efficiency remained above 70% after continuous use for four times, exhibiting excellent stability. It also had excellent selectivity in the presence of SO42-, Cl-, NO3-, and HCO3-, only decreased to 70.24% at high HCO3- ion concentration of 60 mg/L, respectively. And the La-MOFs/Al2O3 had excellent adsorption of total phosphorus, phosphate, and organic phosphorus in the actual river and lake water and completely removed dissolved phosphorus. Finally, a phosphate adsorption mechanism model involved in electrostatic interaction and ligand exchange was proposed. Therefore, La-MOFs/Al2O3 could be considered to be an excellent phosphorus adsorbent for application in the actual water environmental remediation.


Asunto(s)
Fosfatos , Contaminantes Químicos del Agua , Agua/química , Lantano/química , Fósforo , Iones , Adsorción , Cinética , Concentración de Iones de Hidrógeno
2.
Water Sci Technol ; 85(11): 3315-3330, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35704413

RESUMEN

Activated alumina (Al2O3) has been widely used to remove aqueous anionic pollutants such as phosphate for preventing the eutrophication phenomenon. While Al2O3, as a fine powder material, cannot be stably packed into continuous flow treatment, which limits its practical applications. Herein, we proposed a new strategy in which Al2O3 was encapsulated by calcium alginate (CA) to fabricate Al2O3/CA composite, which has relatively large particle size and can be suitable for application in columns. The BET surface area of Al2O3/CA increased to 51.73 m2/g compared with 37.31 m2/g of Al2O3. The maximum adsorption capacity of phosphate on Al2O3/CA was estimated at 1.92-fold compared with that of pure Al2O3 by Langmuir fitting. The main mechanism of phosphate adsorption was the formation of aluminum phosphate precipitation. Moreover, the column studies showed that the adsorption of phosphate on Al2O3/CA was affected by the amount of outer calcium alginate, bed height, influent flow rates and phosphate concentration. This study demonstrated that Al2O3/CA composite has better adsorption capacity and can be used in the dynamic adsorption system as a promising approach for phosphate removal from water.


Asunto(s)
Alginatos , Contaminantes Químicos del Agua , Adsorción , Cinética , Fosfatos , Agua
3.
J Hazard Mater ; 436: 129000, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35526341

RESUMEN

Catalytic ozonation based on heterogeneous metal oxides is a promising approach to removing ammonia as gaseous nitrogen from water. Herein, MgO/Co3O4/CeO2 was prepared for catalytic ozonation of ammonia in an aqueous solution. The influence of various reaction conditions was systematically investigated and optimized, in which the reaction kinetics was also analyzed. After doping Ce, the catalyst with Mg-Co-Ce molar ratio of 4:1:1 and calcined at 700 °C for 3 h, has abundant surface oxygen vacancies and exhibited excellent performance for the selective catalytic oxidation of ammonia to gaseous nitrogen by ozone. It was found that the catalytic activity of catalysts was positively related to oxygen vacancies concentration on the composites surface, which might play a vital role in selective catalytic ozonation. Under the optimal conditions, the ammonia removal rate in MgO/Co3O4/CeO2 catalytic system was 0.03328 min-1 (R2 = 0.99942), about 2.1 times greater than that of MgO/Co3O4 (0.01597 min-1, R2 = 0.99813), and the selectivity was further enhanced from 73.57% to 86.94%. Moreover, the evolution of nitrogen and chlorine species was determined to discuss the mechanism of selective oxidation of ammonia in the low chlorine-containing solution. This study might promote the understanding of catalytic ozonation of ammonia to gaseous nitrogen selectively.

4.
Environ Technol ; 43(3): 345-354, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32594859

RESUMEN

The porous polyvinyl alcohol (PVA)/Al2O3 composite by supporting activated alumina on the cross-linked network of PVA has been successfully prepared and its property for the removal of phosphate in aqueous solution was also evaluated. The structure of the PVA/Al2O3 was examined by scanning electron microscopy. It showed that the activated alumina particles with an average size of 1 µm were evenly dispersed and fixed in the cross-linked network structure of PVA. The effects of adsorption time, solution temperature, pH, initial concentration of phosphate, Al2O3 loading rate, dosage and coexisting ions on the phosphate removal were further studied. The results showed that the highest removal phosphate efficiency of 95% can be obtained with the Al2O3 loading rate of PVA/Al2O3 being 60 wt.% at pH of 4 at 30 °C. The maximum adsorption capacities of PO43- by PVA/Al2O3 suggested by the Langmuir isothermal model was 10.12 mg/g. The adsorption process of phosphate can be fit well with a pseudo-second-order model (R2 = 0.9900). The PVA/Al2O3 composite exhibited a high selective adsorption of phosphate in the presence of commonly coexisting anions except the obvious effect of CO32- in water. Meanwhile, the PVA/Al2O3 composite can be easily separated and recovered due to the granulation of adsorbent. PVA/Al2O3 composite also shows the excellent properties of regeneration and recycling use with the removal efficiency of phosphate was 88.93%, 88.38% and 94.34% after three cycles, respectively. It can be proposed that the PVA/Al2O3 composite is a promising recyclable adsorbent for removing phosphate at low concentration from aqueous solution.


Asunto(s)
Alcohol Polivinílico , Contaminantes Químicos del Agua , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Fosfatos , Porosidad , Agua , Contaminantes Químicos del Agua/análisis
5.
Chemosphere ; 266: 128976, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33234308

RESUMEN

2,4-dichlorophenol (2,4-DCP) is a typical chlorophenol that has been widely used in industrial production and caused serious pollution to the environment. In this study, the performance of Fe/Ni bimetallic nanoparticles supported on polystyrene cation exchange resin (Fe/Ni-D072) to remove 2,4-DCP was evaluated. The effects including the doping amount of Ni, the dosage of Fe/Ni-DCP, the initial concentration of 2,4-DCP, and pH value of the solution on the removal efficiency were also investigated. The results showed that when the initial concentration of 2,4-DCP was 20 mg/L and pH = 7.3, 90% of 2,4-DCP could be dechlorinated by Fe/Ni-D072 (Ni% = 30 wt%, dosage: 6.7 g/L) after 12 h reaction. The dechlorination process followed a pseudo-first-order model, and the reaction constant was 0.252 h-1. In addition, the effects of humic acid and common coexisting ions on dechlorination were studied. The results showed that humic acid with a low concentration (5 mg/L) and CO32- restrained the degradation of 2,4-DCP. The dechlorination products of 2,4-DCP were identified by HPLC and the result showed phenol was the main product with a slight amount of 2-CP as the dechlorination intermediate, and 4-CP was barely detected. These results suggest that Fe/Ni-D072 was a promising catalytic material for the removal of chlorophenol and has great application prospects in groundwater remediation.


Asunto(s)
Clorofenoles , Nanopartículas , Contaminantes Químicos del Agua , Hierro , Níquel , Poliestirenos
6.
J Colloid Interface Sci ; 430: 100-7, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-24998060

RESUMEN

Composite photocatalysts composed of nitrogen-doped anatase TiO2 plates with exposed {001} facets (NTS) and graphene nanosheets (G) were firstly synthesized by a facile one-pot hydrothermal process. The morphologies, structural properties, and photocatalytic activities of the resultant NTS/G composites were investigated in detail. Graphene nanosheets were demonstrated play three important roles in the NTS/G composites, as transporter of photo-excited electrons, extender of light absorption range and enhancer of adsorptive capacity, respectively. Due to the effective charge anti-recombination, the efficient utilization of the visible light and the high adsorptive capacity to target pollutants, the composites exhibited significant improvement in photocatalytic degradation of methylene blue under visible light irradiation. Based on the results, the mechanism of enhanced visible-light photocatalytic activity on NTS/G composites was proposed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...