Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Viruses ; 15(3)2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36992348

RESUMEN

The constantly evolving severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOC) fuel the worldwide coronavirus disease (COVID-19) pandemic. The spike protein is essential for the SARS-CoV-2 viral entry and thus has been extensively targeted by therapeutic antibodies. However, mutations along the spike in SARS-CoV-2 VOC and Omicron subvariants have caused more rapid spread and strong antigenic drifts, rendering most of the current antibodies ineffective. Hence, understanding and targeting the molecular mechanism of spike activation is of great interest in curbing the spread and development of new therapeutic approaches. In this review, we summarize the conserved features of spike-mediated viral entry in various SARS-CoV-2 VOC and highlight the converging proteolytic processes involved in priming and activating the spike. We also summarize the roles of innate immune factors in preventing spike-driven membrane fusion and provide outlines for the identification of novel therapeutics against coronavirus infections.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Inmunidad Innata , Glicoproteína de la Espiga del Coronavirus
2.
Vaccines (Basel) ; 10(3)2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35334976

RESUMEN

African swine fever virus (ASFV) is the causative agent of the epidemic of African swine fever (ASF), with virulent strains having a mortality rate of up to 100% and presenting devastating impacts on animal farming. Since ASF was first reported in China in 2018, ASFV still exists and poses a potential threat to the current pig industry. Low-virulence and genotype I strains of ASFV have been reported in China, and the prevention and control of ASF is more complicated. Insufficient understanding of the interaction of ASFV with the host immune system hinders vaccine development. Physical barriers, nonspecific immune response and acquired immunity are the three barriers of the host against infection. To escape the innate immune response, ASFV invades monocytes/macrophages and dendritic cells, thereby inhibiting IFN expression, regulating cytokine expression and the body's inflammatory response process. Meanwhile, in order to evade the adaptive immune response, ASFV inhibits antigen presentation, induces the production of non-neutralizing antibodies, and inhibits apoptosis. Recently, significant advances have been achieved in vaccine development around the world. Live attenuated vaccines (LAVs) based on artificially deleting specific virulence genes can achieve 100% homologous protection and partial heterologous protection. The key of subunit vaccines is identifying the combination of antigens that can effectively provide protection and selecting carriers that can effectively deliver the antigens. In this review, we introduce the epidemic trend of ASF and the impact on the pig industry, analyze the interaction mechanism between ASFV and the body's immune system, and compare the current status of potential vaccines in order to provide a reference for the development of effective ASF vaccines.

3.
Virus Res ; 312: 198708, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35151773

RESUMEN

Porcine epidemic diarrhea virus (PEDV) is an alpha-coronavirus that causes epidemic diarrhea in swines. The mortality of PEDV infection in one-week-old piglets is extremely high, which causes a huge significant economic loss to the global pig husbandry and blocks its healthy development. There was a lack of adequate studies to elucidate pathogenic mechanism associated with PEDV infection. In the present study, we detected the expression profiles of polyamine metabolism associated genes in Vero cells infected with PEDV by RT-qPCR. It is shown that PAOX(acetylpolyamine oxidase), SMOX(spermine oxidase), SAT1(spermidine-spermine acetyltransferase 1), ODC1(ornithine decarboxylase 1), DHPS(deoxyhypusine synthase) and EIF5A( eukaryotic initiation factor 5A) were significantly upregulated. Through intervening SAT1 level in PEDV-infected Vero cells, it is identified that overexpression of SAT1 inhibited PEDV replication by reducing polyamine levels. Furthermore, polyamine depletion and upregulation were found to regulate the proliferation of PEDV. PEDV infection in Vero cells did not result in a significant change in the protein level of eIF5A, and in addition, the activated eIF5A did not affect the proliferation of PEDV. Our results provided new insights into the influence of polyamine metabolism on the proliferation of PEDV.


Asunto(s)
Infecciones por Coronavirus , Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Animales , Proliferación Celular , Chlorocebus aethiops , Infecciones por Coronavirus/patología , Poliaminas/metabolismo , Virus de la Diarrea Epidémica Porcina/fisiología , Porcinos , Células Vero
4.
Viruses ; 13(7)2021 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-34206713

RESUMEN

In 2018, African swine fever broke out in China, and the death rate after infection was close to 100%. There is no effective and safe vaccine in the world. In order to better characterize and understand the virus-host-cell interaction, quantitative proteomics was performed on porcine alveolar macrophages (PAM) infected with ASFV through tandem mass spectrometry (TMT) technology, high-performance liquid chromatography (HPLC), and mass spectrometry (MS). The proteome difference between the simulated group and the ASFV-infected group was found at 24 h. A total of 4218 proteins were identified, including 306 up-regulated differentially expressed proteins and 238 down-regulated differentially expressed proteins. Western blot analysis confirmed changes in the expression level of the selected protein. Pathway analysis is used to reveal the regulation of protein and interaction pathways after ASFV infection. Functional network and pathway analysis can provide an insight into the complexity and dynamics of virus-host cell interactions. Further study combined with proteomics data found that ARG1 has a very important effect on ASFV replication. It should be noted that the host metabolic pathway of ARG1-polyamine is important for virus replication, revealing that the virus may facilitate its own replication by regulating the level of small molecules in the host cell.


Asunto(s)
Virus de la Fiebre Porcina Africana/genética , Arginasa/genética , Regulación Viral de la Expresión Génica , Macrófagos Alveolares/virología , Poliaminas/metabolismo , Proteoma , Proteómica/métodos , Replicación Viral/genética , Animales , Citoplasma/química , Citoplasma/metabolismo , Citoplasma/virología , Macrófagos Alveolares/química , Poliaminas/análisis , Porcinos , Replicación Viral/fisiología
5.
J Proteome Res ; 18(4): 1623-1633, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30730140

RESUMEN

Outbreaks of porcine epidemic diarrhea virus (PEDV) have caused significant lethality rates in neonatal piglets, which pose a serious threat to the swine industry worldwide. Available commercial vaccines fail to protect against the emergence of high virulence of PEDV variants. Therefore, the endemic state of the PEDV infection in suckling piglets highlights the urgent need for uncovering the molecular determinants of the disease pathogenesis. In this study, stable isotope labeling by amino acids in cell culture (SILAC), combined with high-performance liquid chromatography/tandem mass spectrometry was performed to determine proteomic differences between PEDV-infected and mock-infected Vero cells at 18 h postinfection. The SILAC-based approach identified 4508 host-cell proteins, of which 120 were significantly up-regulated and 103 were significantly down-regulated at ≥95% confidence. Alterations in the expression of selected proteins were verified by Western blot. Several signaling metabolic pathways including mevalonate pathway I and the superpathway of cholesterol biosynthesis were triggered by the infection of the highly virulent strain and are linked to host innate immunity. 25-HC, an inhibitor of the mevalonate pathway, exhibited potent antiviral activity against PEDV infection. Meanwhile, the cell-cycle-related functions were significantly regulated, which may likely be responsible for the viral replication and pathogenicity of PEDV.


Asunto(s)
Interacciones Huésped-Patógeno/fisiología , Virus de la Diarrea Epidémica Porcina , Proteoma , Células Vero , Animales , Chlorocebus aethiops , Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/virología , Hidroxicolesteroles , Marcaje Isotópico , Virus de la Diarrea Epidémica Porcina/patogenicidad , Virus de la Diarrea Epidémica Porcina/fisiología , Proteoma/análisis , Proteoma/metabolismo , Proteómica , Células Vero/metabolismo , Células Vero/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...